Photonic Sensors, 2019, 9 (3): 246, Published Online: Sep. 8, 2019  

Size-Dependent RIS and FOM of Ag-Fe and Au-Fe Bimetallic Alloys in Triangular Prism: A DDA Study

Author Affiliations
Department of Physics, Sant Longowal Institute of Engineering and Technology, Sangrur-148106, Punjab, India
Abstract
In this paper, the localized surface plasmon resonance (LSPR) peak of Ag-Fe and Au-Fe alloy nanoparticles for the triangular prism is calculated by using the discrete dipole approximation (DDA) method. We investigate the variation of the resonance wavelength, refractive index sensitivity, and figure of merit with the particles size and alloy compositions. We perform a comparative study on the refractive index sensitivity and figure of merit of alloys in order to find the considered (Ag-Fe and Au-Fe) alloys with high sensitivity. The refractive index sensitivity of the Au-Fe alloy is found higher than that of the Ag-Fe alloy. Therefore, to optimize the size of alloy nanoparticles (NPs) for the triangular prism, the figure of merit is calculated and observed that the optimized size is 50 nm and 20 nm for Ag-Fe and Au-Fe alloys, respectively. A comparison of Ag-Fe shows that the Au-Fe alloy NPs have greater figure of merit (FOM) and thus may be more suitable for applications in biosensing.
References

[1] I. M. Billas, A. Chatelain, and W. A. de Heer, “Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters,” Science, 1994, 265(5179): 1682-1684.

[2] J. Liu, S. Z. Qiao, Q. H. Hu, and G. Q. Lu, “Magnetic nanocomposites with mesoporous structures: synthesis and applications,” Small, 2011, 7(4): 425-443.

[3] E. A. Kwizera, E. Chaffin, Y. Wang, and X. Huang, “Synthesis and properties of magnetic-optical core-shell nanoparticles,” RSC Advances, 2017, 7(28): 17137-17153.

[4] L. Lu, W. Zhang, D. Wang, X. Xu, J. Miao, and Y. Jiang, “Fe@Ag core-shell nanoparticles with both sensitive plasmonic properties and tunable magnetism,” Materials Letters, 2010, 64(15): 1732-1734.

[5] V. Amendola, R. Saija, O. M. Marago, and M. A. Iati, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale, 2015, 7(19): 8782-8792.

[6] E. A. Chaffin, S. Bhana, R. T. O’Connor, X. Huang, and Y. Wang, “Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles,” The Journal of Physical Chemistry B, 2014, 118(49): 14076-14084.

[7] J. Sekhon and S. S. Verma, “Tunable plasmonic properties of silver nanorods for nanosensing applications,” Journal of Materials Science, 2012, 47(4): 1930-1937.

[8] J. Zhai and J. Li, “Investigation on the sensitivity and FOM of Ag nanoparticles and nanoarrays,” Plasmonics, 2018, https://doi.org/10.1007/s11468-018-0842-z.

[9] J. Katyal and R. K. Soni, “Size-and shape-dependent plasmonic properties of aluminum nanoparticles for nanosensing applications,” Journal of Modern Optics, 2013, 60(20): 1717-1728.

[10] G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” The Journal of Physical Chemistry C, 2008, 112(36): 13958-13963.

[11] J. Kelly, G. Keegan, and M. Brennan-Fournet, “Triangular silver nanoparticles: their preparation, functionalization and properties,” Acta Physica Polonica A, 2012, 122(2): 337-345.

[12] P. Tuersun, T. Yusufu, A. Yimiti, and A. Sidike, “Refractive index sensitivity analysis of gold nanoparticles,” International Journal for Light and Electron Optics, 2017, 149: 384-390.

[13] F. K. Guedje, M. Giloan, M. Potara, M. N. Hounkonnou, and S. Astilean, “Optical properties of single silver triangular nanoprism,” Physica Scripta, 2012, 86(5): 055702-055708.

[14] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and the dielectric environment,” Journal of Physical Chemistry B, 2003, 107(3): 668-677.

[15] Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors, 2014, 14(3): 4948-4959.

[16] B. J. Yakes, J. Deeds, K. White, and S. L. DeGrasse, “Evaluation of surface plasmon resonance biosensors for detection of tetrodotoxin in food matrices and comparison to analytical methods,” Journal of Agricultural and Food Chemistry, 2010, 59(3): 839-846.

[17] M. N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Lu, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sensors and Actuators A: Physical, 1995, 51(2-3): 211-217.

[18] V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. Iati, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of Physics: Condensed Matter, 2017, 29(20): 203002.

[19] V. Amendola, S. Scaramuzza, F. Carraro, and E. Cattaruzza, “Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment,” Journal of Colloid and Interface Science, 2017, 489: 18-27.

[20] P. Wagener, J. Jakobi, C. Rehbock, V. S. K. Chakravadhanula, C. Thede, U. Wiedwald, and S. Barcikowski, “Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles,” Scientific Reports, 2016, 6: 23352.

[21] S. Scaramuzza, D. Badocco, P. Pastore, D. F. Coral, M. B. Fernandez van Raap, and V. Amendola, “Magnetically assembled SERS substrates composed of iron-silver nanoparticles obtained by laser ablation in liquid,” ChemPhysChem, 2017, 18(9): 1026-1034.

[22] Z. Swiatkowska-Warkocka, A. Pyatenko, F. Krok, B. R. Jany, and M. Marszalek, “Synthesis of new metastable nanoalloys of immiscible metals with a pulse laser technique,” Scientific Reports, 2015, 5: 9849.

[23] S. S. Verma, P. Bhatia, and M. M. Sinha, “Optical effects of triangular shaped gold-iron nanoparticles,” Nano Science & Nano Technology: An Indian Journal, 2018, 12(1): 123-129.

[24] B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” Journal of Optical Society of America A, 1994, 11(4): 1491-1499.

[25] S. D. Gedney, “Introduction to the finitedifference-time-domain (FDTD) method for electromagnetics,” Synthesis Lectures on Computational Electromagnetics, 2011, 6(1): 1-250.

[26] P. Monk, Finite element methods for Maxwell’s equations. Oxford: Oxford University Press, 2003.

[27] B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” Journal of Optical Society of America A, 2008, 25(11): 2693-2703.

[28] B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” arXiv preprint arXiv, 2013, 1305.6497.

[29] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. New York: John Wiley and Sons, 2008.

[30] C. Y. Tsai, K. H. Chang, C. Y. Wu, and P. T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nano-ring arrays,” Optics Express, 2013, 21(12): 14090-14096.

[31] P. B. Johnson and R. W Christy, “Optical constants of the noble metals,” Physical Review B, 1972, 6(12): 4370-4379.

[32] P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Physical Review B, 1974, 9(12): 5056-5070.

[33] P. Bhatia, S. S. Verma, and M. M. Sinha, “Optical properties simulation of magneto-plasmonic alloys nanostructures,” Plasmonics, 2018, https://doi.org/10.1007/s11468-018-0839-7.

[34] M. Alsawafta, M. Wahbeh, and V. V. Truong, “Simulated optical properties of gold nanocubes and nanobars by discrete dipole approximation,” Journal of Nanomaterials, 2012, 2012: 1-9.

[35] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical Reviews, 2011, 111(6): 3828-3857.

[36] T. Boothe, L. Hilbert, M. Heide, L. Berninger, W. B. Huttner, V. Zaburdaev, et al., “A tunable refractive index matching medium for live imaging cells, tissues and model organisms,” eLife, 2017, 6: 27240.001-27240.013.

Pradeep BHATIA, S. S. VERMA, M. M. SINHA. Size-Dependent RIS and FOM of Ag-Fe and Au-Fe Bimetallic Alloys in Triangular Prism: A DDA Study[J]. Photonic Sensors, 2019, 9(3): 246.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!