中国激光, 2020, 47 (8): 0806001, 网络出版: 2020-08-17   

基于三个非对称光纤布拉格光栅的双腔窄带宽双波长透射 下载: 721次

Ultranarrow Dual-Transmission Properties of a Two-Cavity Structure Based on Three Asymmetric Fiber Bragg Gratings
作者单位
华东理工大学理学院, 上海 200237
引用该论文

陈建, 邓立, 钮月萍, 龚尚庆. 基于三个非对称光纤布拉格光栅的双腔窄带宽双波长透射[J]. 中国激光, 2020, 47(8): 0806001.

Chen Jian, Deng Li, Niu Yueping, Gong Shangqing. Ultranarrow Dual-Transmission Properties of a Two-Cavity Structure Based on Three Asymmetric Fiber Bragg Gratings[J]. Chinese Journal of Lasers, 2020, 47(8): 0806001.

参考文献

[1] Kong F Q, Romeira B, Zhang J J, et al. A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing[J]. Journal of Lightwave Technology, 2014, 32(9): 1784-1793.

[2] Diaz S, Lopez-Amo M. Dual-wavelength single-longitudinal-mode erbium fiber laser for temperature measurements[J]. Optical Engineering, 2014, 53(3): 036106.

[3] 谭展, 廖常锐, 刘申, 等. 基于空芯光纤和光纤布拉格光栅的温度应变同时测量传感器[J]. 光学学报, 2018, 38(12): 1206007.

    Tan Z, Liao C R, Liu S, et al. Simultaneous measurement sensors of temperature and strain based on hollow core fiber and fiber Bragg grating[J]. Acta Optica Sinica, 2018, 38(12): 1206007.

[4] Libatique N J C, Jain R K. Precisely and rapidly wavelength-switchable narrow-linewidth 1.5-μm laser source for wavelength division multiplexing applications[J]. IEEE Photonics Technology Letters, 1999, 11(12): 1584-1586.

[5] 古建标, 朱福南, 刘磊, 等. 1550 nm波段窄线宽高调谐带宽激光光源[J]. 中国激光, 2019, 46(9): 0901003.

    Gu J B, Zhu F N, Liu L, et al. 1550 nm laser source with narrow linewidth and high tuning bandwidth[J]. Chinese Journal of Lasers, 2019, 46(9): 0901003.

[6] 孟瑜, 苏雪梅, 庞妍. 掺铒光纤动态光栅与光纤Bragg光栅Fabry-Perot腔特性研究[J]. 光学学报, 2018, 38(10): 1006003.

    Meng Y, Su X M, Pang Y. Characteristics of Fabry-Perot cavity based on dynamic grating in Er-doped fiber and fiber Bragg grating[J]. Acta Optica Sinica, 2018, 38(10): 1006003.

[7] Yeh C H, Shih F Y, Wang C H, et al. Tunable and stable single-longitudinal-modedual-wavelength erbium fiber laser with 1.3 nm mode spacing output[J]. Laser Physics Letters, 2008, 5(11): 821-824.

[8] Jeon M Y, Kim N, Shin J, et al. Widely tunable dual-wavelength Er 3+-doped fiber laser for tunable continuous-wave terahertz radiation[J]. Optics Express, 2010, 18(12): 12291-12297.

[9] Ahmad H, Muhammad F D, Pua C H, et al. Dual-wavelength fiber lasers for the optical generation of microwave and terahertz radiation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 166-173.

[10] Wang Z T, Chen Y, Zhao C J, et al. Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber[J]. IEEE Photonics Journal, 2012, 4(3): 869-876.

[11] Liu L, Zheng Z, Zhao X, et al. Dual-wavelength passively Q-switched erbium doped fiber laser based on an SWNT saturable absorber[J]. Optics Communications, 2013, 294: 267-270.

[12] Feng X, Liu Y, Fu S, et al. Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating[J]. IEEE Photonics Technology Letters, 2004, 16(3): 762-764.

[13] Dai Y, Chen X, Sun J, et al. Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method[J]. IEEE Photonics Technology Letters, 2006, 18(18): 1964-1966.

[14] Pradhan S, Town G E, Grant K J. Dual-wavelength DBR fiber laser[J]. IEEE Photonics Technology Letters, 2006, 18(16): 1741-1743.

[15] Liu X. A dual-wavelength sampled fiber Bragg grating and its application in L-band dual-wavelength erbium-doped fiber lasers[J]. IEEE Photonics Technology Letters, 2006, 18(20): 2114-2116.

[16] Álvarez-Tamayo R I, Durán-Sánchez M, Pottiez O, et al. Tunable dual-wavelength fiber laser based on a polarization-maintaining fiber Bragg grating and a Hi-Bi fiber optical loop mirror[J]. Laser Physics, 2011, 21(11): 1932-1935.

[17] Álvarez-Tamayo R I, Durán-Sánchez M, Pottiez O, et al. A dual-wavelength tunable laser with superimposed fiber Bragg gratings[J]. Laser Physics, 2013, 23(5): 055104.

[18] Liu X M. Tunable ultranarrow dual-channel filter based on sampled FBGs[J]. Journal of Lightwave Technology, 2008, 26(13): 1885-1890.

[19] Chen X F, Yao J P, Deng Z C. Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser[J]. Optics Letters, 2005, 30(16): 2068-2070.

[20] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

[21] Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10): 1035-1037.

[22] Jiang L, Zhang D S, Huang Y L, et al. A novel dual-wavelength fiber Bragg grating[J]. Microwave and Optical Technology Letters, 2005, 44(4): 385-388.

[23] 廖延彪. 光纤光学:原理与应用[M]. 北京: 清华大学出版社, 2010: 197- 204.

    Liao YB. Fiber optics: principles and applications[M]. Beijing: Tsinghua University Press, 2010: 197- 204.

陈建, 邓立, 钮月萍, 龚尚庆. 基于三个非对称光纤布拉格光栅的双腔窄带宽双波长透射[J]. 中国激光, 2020, 47(8): 0806001. Chen Jian, Deng Li, Niu Yueping, Gong Shangqing. Ultranarrow Dual-Transmission Properties of a Two-Cavity Structure Based on Three Asymmetric Fiber Bragg Gratings[J]. Chinese Journal of Lasers, 2020, 47(8): 0806001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!