红外与激光工程, 2018, 47 (5): 0520002, 网络出版: 2018-09-12  

频率可调太赫兹微结构光电导天线

Frequency adjustable THz microstructured photoconductive antennas
作者单位
1 中国科学技术大学 信息科学技术学院, 安徽 合肥 230027
2 西南科技大学 信息工程学院, 四川 绵阳 621010
3 西南科技大学 理学院, 四川 绵阳621010
摘要
太赫兹波低频段辐射计在地球大气和分子探测中的需求不断增加。在微波电开口谐振环等效电路模型及其谐振特性仿真设计的基础上, 将微波谐振结构和传统带状线偶极子光电导天线结合, 提出了新型微结构光电导天线, 具有频率调节灵敏度高、谐振特性明显的优点。加工了不同尺寸的新型光电导天线和常规的带状线偶极子光电导天线实物, 并进行了实验对比研究。两种类型的太赫兹辐射频谱明显不同, 新型光电导天线由于微结构电开口谐振环的双频谐振特性出现了两个谐振峰, 3 dB相对带宽约为50%, 得到了窄带特性; 而传统光电导天线只有单峰, 3 dB相对带宽为93.07%, 显然为宽谱特性。对于新型光电导天线的仿真和实测吻合较好, 调节微结构天线的谐振环臂长可以获得较大的峰值频率移动相对值, 从而也验证了理论模型、谐振单元仿真结果的有效性。
Abstract
There are increased application requirements of Terahertz wave low frequency radiometers in Earth atmosphere and molecular detection. Based on the equivalent circuit model and their resonant characteristics′ simulation design of the microwave electrical split ring resonators(eSRR), novel microstructured photoconductive antennas(PCAs) were proposed by combining the microwave resonant structure with the traditional stripline dipole PCA. The new PCAs were with high frequency adjustment sensitivity and obvious resonance characteristics. The novel PCAs with different dimensions were fabricated and experimentally compared with a conventional stripline dipole PCA. The terahertz radiation spectrum of the two types PCAs are significantly different: the novel PCAs have dual resonant peaks and narrowband resonating characteristics owing to the dual-frequency resonant characteristics of the microstructured eSSRs, and the 3 dB relative bandwidth is about 50%; while the conventional PCA has only a single peak with broad spectrum radiations, whose the 3 dB relative bandwidth is 93.07%. The simulation and test results of the new PCAs agree well. It is demonstrated that adjusting the resonant ring′s arm length of the new PCAs can obtain a relatively larger peak frequency shift. Thus the theoretical model and the simulation results are all verified.
参考文献

[1] Lee Y S. Principles of Terahertz Science and Technology[M]. US: Springer, 2009.

[2] 张旭涛, 孙金海, 蔡禾, 等. 太赫兹时域光谱系统静区测试及数据处理[J]. 红外与激光工程, 2016, 45(11): 1125003.

    Zhang Xutao, Sun Jinhai, Cai He, et al. Quiet zone measurements and data processing of THz_TDS experiment system[J]. Infrared & Laser Engineering, 2016, 45(11): 1125003. (in Chinese)

[3] 左剑, 张亮亮, 巩辰, 等. 太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展[J]. 物理学报, 2016, 65(1): 010704.

    Zuo Jian, Zhang Liangliang, Gong Chen, et al. Terahertz system on chip and research progress of terahertz ultra wide spectrum source based on micro nano structure[J]. Acta Physica Sinica, 2016, 65(1): 010704. (in Chinese)

[4] 夏祖学, 刘发林, 陈俊学, 等.偶极子光电导天线结构对THz辐射特性影响的研究[J].红外与激光工程, 2015, 44(8): 2429-2434.

    Xia Zuxue, Liu Falin, Chen Junxue, et al. Impact of dipole photoconductive antenna structure on the THz radiation characteristics [J]. Infrared & Laser Engineering, 2015, 44(8): 2429-2434. (in Chinese)

[5] Khiabani N, Huang Y, Shen Y. Discussions on the main parameters of THz photoconductive antennas as emitters[C]//Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on IEEE, 2011: 462-466.

[6] 李晨毓, 杨舟, 周庆莉, 等. 结构对太赫兹超材料光调控特性的影响[J]. 红外与激光工程, 2016, 45(7): 0703002.

    Li Chenyu, Yang Zhou, Zhou Qingli, et al. Influence of structures on optical modulation in terahertz metamaterials[J].Infrared & Laser Engineering, 2016, 45(7): 0703002. (in Chinese)

[7] 陈勰宇, 田震. 石墨烯太赫兹波动态调制的研究进展[J]. 中国光学, 2017, 10(1): 86-97.

    Chen Xieyu, Tian Zhen. Recent progress in terahertz dynamic modulation based on graphen[J]. Chinese Optics, 2017, 10(1): 86-97. (in Chinese)

[8] 张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017, 10(1): 1-12.

    Zhang Lei, Liu Shuo, Cui Tiejun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. (in Chinese)

[9] O′Hara J F, Chen H T, Taylor A J, et al. Split-ring resonator enhanced terahertz antenna[C]//Nonlinear Optics: Materials, Fundamentals and Applications, Optical Society of America, 2007: TuB2.

[10] Takano K, Chiyoda Y, Nishida T, et al. Optical switching of terahertz radiation from meta-atom-loaded photoconductive antennas[J]. Applied Physics Letters, 2011, 99(16): 161114.

[11] 刘民哲, 王泰升, 李和福, 等. 静电场辅助的微压印光刻技术[J]. 光学 精密工程, 2017, 25(3): 663-671.

    Liu Minzhe, Wang Taisheng, Li Hefu, et al. Electrostatic field assisted micro imprint lithography technology[J]. Optics & Precision Engineering, 2017, 25(3): 663-671. (in Chinese)

[12] Nguyen T K, Kim W T, Kang B J, et al. Photoconductive dipole antennas for efficient terahertz receiver[J]. Optics Communications, 2017, 383: 50-56.

[13] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial Devices[J]. Nature, 2007, 444(6): 597-600.

[14] Hughes S, Tani M, Sakai K. Vector analysis of terahertz transients generated by photoconductive antennas in near- and far-field regimes [J]. Applied Physics, 2003, 93(8):4880-4884.

[15] Zhu N, Ziolkowski R W. Photoconductive THz antenna designs with high radiation efficiency, high directivity, and high aperture efficiency[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 721-730.

[16] Miyamaru F, Saito Y, Yamamoto K, et al. Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas [J]. Applied Physics Letters, 2010, 96(21): 211104.

夏祖学, 刘发林, 邓琥, 陈俊学, 刘泉澄. 频率可调太赫兹微结构光电导天线[J]. 红外与激光工程, 2018, 47(5): 0520002. Xia Zuxue, Liu Falin, Deng Hu, Chen Junxue, Liu Quancheng. Frequency adjustable THz microstructured photoconductive antennas[J]. Infrared and Laser Engineering, 2018, 47(5): 0520002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!