光学学报, 2019, 39 (6): 0602001, 网络出版: 2019-06-17  

由动态Stark效应诱导的氢原子涡旋动量分布 下载: 1081次

Dynamic-Stark-Effect Induced Distortion of Vortex Momentum Distributions of Hydrogen Atoms
作者单位
天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
摘要
采用强场近似方法,对处于两个具有时间延迟的圆偏振激光场中氢原子的涡旋状光电子动量分布进行了数值模拟。在两个延时激光脉冲的作用下,电子吸收光子后克服电离阈值,从基态经由两个不同的通道跃迁到连续态,产生的电子波包之间会发生干涉。模拟结果表明,所产生的光电子动量涡旋的旋向与两脉冲的偏振方向有关,涡旋臂的数目与激光载波频率有关。动态Stark效应是一种典型的强场现象。若在电离发生的同时考虑动态Stark效应,将会观察到动量涡旋的扭曲。对顺时针的动量涡旋及其扭曲进行分析,发现扭曲现象是由动态Stark效应引入的附加相位的时间非线性特性引起的。
Abstract
In this study, the vortex-shaped photoelectron momentum distributions of a hydrogen atom ionized by two time-delayed circularly polarized laser fields are numerically simulated based on the strong field approximation (SFA) theory. Under the action of two time-delayed laser pulses, the electron absorbs photons to overcome the ionization threshold and undergoes photoionization via two different transition channels to reach the continuum states for electron wave-packet interference. The simulation results show that the orientation of the photoelectron momentum vortices is observed to be related with the polarization directions of the two pulses, whereas the number of vortex arms is related with the carrier frequencies. Furthermore, the dynamic Stark effect is a ubiquitous strong field process, which would result in the distortion of the vortex-shaped momentum distributions when considered. On this basis, the clockwise momentum vortices and their distortion are specifically investigated, revealing that the distortion is attributed to the nonlinear properties of the phase associated with the dynamic Stark effect.

1 引言

近年来,随着超强激光技术的飞速发展,其与原子或分子相互作用的强场过程引起了人们的广泛关注。处于强激光场中的原子或分子通常会被电离或解离,所产生的光电子动量谱或能量谱可被用于研究相关的强场过程,因此原子或分子中光电子的动量分布得到了广泛研究[1-22]。当原子或分子被两个具有时间延迟的中等强度圆偏振激光脉冲电离时,所产生的电子波包之间将发生Ramsey干涉,从而可以在激光偏振平面上观察到涡旋状或螺旋结构的光电子动量分布[23-26]。2016年,Ngoko Djiokap等[25]通过对圆偏振激光脉冲作用下氦原子的单电离过程进行数值研究发现,当激光脉冲载波频率为15 eV且强度为1×1012 W/cm2时,所产生的光电子动量分布会呈现奇重和偶重对称结构。此外,光电子的涡旋动量分布已经在钾原子实验中得到了证实[26]

动态Stark效应,也被称为光学Stark效应,存在于几乎所有的强场过程中[27-30]。2012年,Demekhin等[31]在氢原子的光电子能谱中发现了一类新的干涉条纹,并证实这种新光谱特性是由动态Stark效应引起的。在一定条件下,动态Stark效应会引起原子能级随激光电场包络函数的平方移动,即该能级移动与时间有关,而与激光脉冲的载波频率无关[30-33]。值得注意的是,动态Stark效应会使氢原子的基态能级上移[34]

20世纪中期,Keldysh[35]在研究原子与强激光场的相互作用时提出可忽略库仑势对电离原子的影响,之后Faisal[36]和Reiss[37]分别对Keldysh理论进行了改进,形成KFR理论,现已发展成强场近似(SFA)理论[1,38-39],成为相关领域常用的解析方法。

本文研究的原子中光电子动量分布的涡旋特性,与以往研究的氢原子的涡旋方向[40]不同。采用SFA方法,通过改变激光脉冲载波频率以及动态Stark效应的强度,对处于两个圆偏振激光场中的氢原子的顺时针涡旋状动量分布的产生、扭曲及机理进行了数值模拟,并研究了强光与原子相互作用的光谱表现。

2 数值方法

SFA方法是目前强场物理领域常用的解析计算手段,已被成功用于计算过阈电离(ATI)和高次谐波产生(HHG)等[1,41-45]。研究采用SFA方法,模拟计算光电离产生的氢原子的涡旋状动量分布。假定氢原子被两个具有时间延迟的圆偏振阿秒激光脉冲电离,则激光电场的分量Ex(t)和Ey(t)在Cartesian坐标系中可表示为

Ex(t)=22F(t)E0cos(ωt)+22F(t+τ)E0cos[ω(t+τ)]Ey(t)=-22F(t)E0sin(ωt)+22F(t+τ)E0sin[ω(t+τ)],-T2<t<T2,(1)

式中:T为脉冲持续时间;τ为脉冲的时间间隔;ω为激光脉冲载波频率;E0为激光电场峰值振幅;F(t)=exp[-(t/T)2]为脉冲包络函数。(1)式对应第一个脉冲右旋、第二个脉冲左旋的情况。激光场的矢势A同样在x-y平面上。两束激光脉冲的宽度、强度、载波频率以及持续时间相同,偏振方向相反。若原子中的电子从基态被电离到连续态所获得的最终动量用p表示,该电子的概率振幅可表示为[1,46-48]

B(p)=i0E(t')D(p)exp[-iS(t')]dt',(2)

式中:t'表示可能发生电离的任意时刻,其取值范围为[0, ¥];D(p)表示原子的跃迁偶极矩,可表示为[38]

D(p)=27/2×(2Ip)5/4π[p/(p2+2Ip)3](3)

S(t')为半经典动作相位,可表示为

S(t')=t'[Ip+(p+A)2/2]dt″+ΔS(t'),(4)

式中:t″表示电离发生后的任意时刻,其取值范围为[t', ¥];Ip为氢原子的电离势(Ip=13.6 eV)。为了分析动态Stark效应对氢原子动量涡旋的影响,在(4)式中引入一个附加Stark相位ΔS来表示由动态Stark效应引起的相位变化,这一相位变化与时间有关。已有研究表明,动态Stark效应会引起氢原子基态能级的上移,且该能级移动与脉冲包络函数的平方有关[30,34]。定义一个Stark参数α,用来表示Stark效应的强度,并将能级的上移等效为氢原子电离势的降低,即IpIp{1-α[F2(t)+F2(t+τ)]},则附加Stark相位ΔS可表示为

ΔS=t'{-Ipα[F2(t″)+F2(t″+τ)]}dt″(5)

这种在SFA方法中利用有效电离势来模拟动态Stark效应的表达已经得到了验证[32-33,43],并且SFA理论也被大量应用于类似的强场过程研究中[46-51],其Keldysh参数γ为0.71~3.29。

通过改变激光脉冲强度I(对应激光电场峰值振幅E0)、载波频率ω以及两脉冲间的时间间隔τ,进行大量的数值模拟,验证了研究结果的可靠性。除特别说明外,使用原子单位(a.u.)。

3 结果与讨论

图1为氢原子电离过程的示意图。电离作用由两个具有时间延迟的反向圆偏振阿秒激光脉冲产生,脉冲载波频率ω=8 eV。动态Stark效应引起氢原子基态能级上移,可等效为电离势的降低。电离产生的光电子经由两个不同的跃迁通道从基态到达连续态,两个跃迁通道分别为:|s,0>→|p,1>→|d,2>和|s,0>→|p,-1>→|d,-2>,其中|l,m>表示轨道的量子数和磁量子数[26]。与光学中光波的干涉一样,经过两个不同跃迁通道所产生的光电子波包会发生干涉[24],从而可以在偏振平面上观察到光电子的涡旋状动量分布。不考虑动态Stark效应的影响,从图2中可观察到对称的光电子动量涡旋,色度条表示原子跃迁概率振幅的相对大小;若电离及动态Stark效应同时作用,所产生的光电子动量涡旋将发生扭曲。图2中,PxPy分别表示电子动量pxy方向的分量。激光脉冲载波频率分别为4,8,16 eV,脉冲宽度为1个光学周期(1 o.c.),脉冲强度为1×1014 W/cm2,脉冲持续时间为10 o.c.,两脉冲间的延迟时间为3 o.c.。分析图2可得,若将两个“右/左”圆偏振的延时脉冲(即第一个脉冲右旋,第二个脉冲左旋)作用于氢原子,电离产生的光电子会呈现逆时针的动量涡旋,如图2(a)~(c)所示;在两个延时脉冲为“左/右”圆偏振的情况下,可以观察到顺时针的光电子动量涡旋,如图2(d)~(f)所示。进一步分析可得动量分布中涡旋臂的数目等于氢原子电离所吸收的光子总数,例如:若第一束激光脉冲载波频率为8 eV,那么氢原子需要吸收2个光子以克服其电离阈值(13.6 eV),从而电离;同理,第二束8 eV脉冲作用后,氢原子共吸收4个光子,与形成的光电子动量涡旋臂的数目相等。这一结论与两个延时脉冲的偏振方向无关,对载波频率为4 eV及16 eV时的激光脉冲同样成立,且与其他科研人员对光电子动量涡旋的研究结果[24-26]一致。此外,通过数值模拟发现,当两个同向偏振延时脉冲作用于氢原子时,所产生的光电子动量分布不会呈现涡旋状结构。

图 1. 氢原子电离过程示意图

Fig. 1. Schematic illustration of ionization process of hydrogen atom

下载图片 查看所有图片

图 2. 氢原子动量涡旋图。(a)~(c) 两延时脉冲“右/左”圆偏振(第一个脉冲是右旋圆偏振,第二个脉冲是左旋圆偏振)的情况;(d)~(f) 两延时脉冲“左/右”圆偏振的情况

Fig. 2. Vortex-shaped momentum distributions of hydrogen atom. (a)-(c) ‘Right/left’ polarization for two time-delayed pulses (first is right circularly polarized and second is left circularly polarized); (d)-(f) ‘left/right’ polarization for two time-delayed pulses

下载图片 查看所有图片

图3所示,在动态Stark效应的影响下,动量涡旋会发生扭曲,扭曲程度与动量涡旋本身的旋向无关。为了定性分析动态Stark效应的影响,只对激光载波频率ω=8 eV时产生的顺时针光电子动量涡旋进行讨论,其他情况相同。从(3)式可以看出,若将动态Stark效应引起的氢原子基态能级的上移等效为电离势的降低,则原子的跃迁偶极矩会随之发生变化。(5)式中定义的Stark参数α的取值为0.01,0.02,0.04。α=0.01意味着氢原子的基态能级移动仅为0.01×13.6 eV=0.136 eV。从图3可以看出,即使动态Stark效应强度很弱(α=0.01),动量涡旋也会发生扭曲。随着Stark参数α的增大,动态Stark效应增强,导致动量涡旋扭曲程度不断加剧。同样是对于氢原子,当激光强度为5×1015 W/cm2时,动态Stark效应引起的能级移动为0.26 eV[31]。以上结果表明,氢原子的光电子动量涡旋对动态Stark效应比较敏感。

图 3. 动态Stark效应作用下的氢原子动量涡旋图。(a)~(c)对应两延时脉冲“右/左”圆偏振的情况;(d)~(f)对应两延时脉冲“左/右”圆偏振的情况。激光脉冲参数与图2相同

Fig. 3. Vortex-shaped momentum distributions of hydrogen atom when dynamic Stark effect is considered. (a)-(c) ‘Right/left’ polarization for two time-delayed pulses; (d)-(f) ‘left/right’ polarization for two time-delayed pulses. Laser pulses parameters are same as in Fig. 2

下载图片 查看所有图片

ω=8 eV时对应的顺时针光电子动量涡旋情况如图4所示,动量涡旋各臂编号见图4

图 4. α=0到α=0.04的动量涡旋变化图。(a) α=0(涡旋臂编号为1,2,3,4);(b) α=0.04(箭头指示臂2峰位置的移动);(c) 各臂峰值强度变化图;(d) 各臂极角变化图

Fig. 4. Transition of vortex-shaped momentum distributions from α=0 to α=0.04. (a) α=0 (vortex arms numbered as 1, 2, 3, 4); (b) α=0.04 (arrow illustrating corresponding shift of peak position of second vortex arm); (c) variation of peak intensity of each arm; (d) variation of polar angle of each arm

下载图片 查看所有图片

图4可以观察到,考虑动态Stark效应的影响,动量涡旋4个臂的峰值强度和位置均有变化。涡旋臂1、4的强度大大降低,且两臂逐渐向外远离原点;涡旋臂2、3的强度变化虽相对较小,但峰值位置移动明显,两臂表现为逐渐向原点旋进。

动态Stark效应会引入一个附加相位,即Stark相位,该附加相位在氢原子动量涡旋的扭曲过程中发挥着重要作用。在SFA 理论中,可以通过有效电离势的形式将该附加相位叠加到光电子半经典动作相位上。(4)式给出了总相位(即半经典动作相位S+附加Stark相位ΔS)的表达式,可以看出光电子总相位是与时间和动量有关的函数。图5展示了Stark相位及总相位随时间的变化。为了清晰表达,仅展示3.2~3.7 o.c.(对应第一个脉冲包络)之间的总相位图。从图5(a)~(d)中可以看出,附加Stark相位与时间有关,分别在两个脉冲包络的波峰位置取得极大值,与(5)式的表达一致。从图5(e)~(h)中可以看出,各涡旋臂相位及相位变化是不同的。正是相位变化量不同,导致各涡旋臂扭曲程度不同。图5(i)展示了Stark效应作用前后各臂总相位的对比,可以直观地看到动态Stark效应对各涡旋臂的总相位均有影响(为了表达更清楚,图5(e)~(i)中的总相位值均通过2π的整数倍转移到[0,2π]中)。通过进一步对总相位变化量进行均方根计算,得到各臂的总相位变化量依次为80.8,66.1,69.5,79.6 rad (均为实际计算值)。从上述计算结果可以看出,臂1的相位变化量最大,这与其扭曲最严重的现象一致。

图 5. 相位随时间的变化图。(a)~(d) 附加Stark相位,分别对应α=0.01, 0.02, 0.03, 0.04; (e)~(h) 各臂总相位 (半经典动作相位+Stark相位);(i) 有(实线)、无(虚线)Stark效应情况下各臂总相位对比

Fig. 5. Time evolution of different kinds of phases. (a)-(d) Stark phases for α=0.01, 0.02, 0.03, 0.04; (e)-(h) total phase (semiclassical phase+Stark phase) for each vortex arm; (i) comparison of total phases with (solid line) and without (dashed line) Stark effect for each vortex arm

下载图片 查看所有图片

图5所示,在脉冲持续时间为0~10 o.c.的情况下,动态Stark效应集中在2~8 o.c.时间段起作用,其他时间段强度非常弱,因此选择在2~8 o.c.对(2)式进行积分来重现动量涡旋是合理的。积分重现的动量涡旋如图6(a)所示,其与图5(b)(对整个脉冲持续时间进行积分) 极其相似,证明附加Stark相位在氢原子动量涡旋的扭曲中起到了关键作用。为了进一步说明动态Stark相位的时间非线性特性,将(5)式中与时间有关的脉冲包络函数F(t)替换为单位常数,并重新对光电子的动量分布进行数值模拟,所得结果如图6(b)所示,可以看出所产生的光电子动量分布呈现对称的涡旋结构。此外,数值模拟结果表明,将附加Stark相位换成任意时间线性的附加相位时,均不会引起光电子动量涡旋的扭曲。因此,可以得出与时间呈非线性关系的附加Stark相位导致了氢原子动量涡旋的扭曲这个结论[40]

图 6. 2~8 o.c.间积分重现的动量涡旋图。(a) α=0.04; (b)脉冲包络函数F(t)为单位常数

Fig. 6. Vortex-shaped momentum distributions reproduced by integrating between 2 o.c and 8 o.c. (a) α=0.04; (b) pulse envelope function F(t) is unit constant

下载图片 查看所有图片

4 结论

利用SFA方法,对强激光脉冲作用下氢原子的光电子动量分布进行了大量的数值模拟。当两个具有时间延迟的反向圆偏振激光脉冲作用于氢原子时,会产生涡旋状的光电子动量分布。如果将动态Stark效应考虑在内,由于附加Stark相位对光电子总相位的影响,光电子动量涡旋会发生扭曲,并且扭曲程度会随着Stark效应的增强而加剧;这种扭曲是由附加Stark相位的时间非线性特性引起的。该研究利用了氢原子的光电子动量涡旋谱对动态Stark效应敏感的特点,可为研究强激光场特性提供一种新的手段。

参考文献

[1] BrabecT. Strong field laser physics[M]. New York: Springer, 2008: 166- 168.

    BrabecT. Strong field laser physics[M]. New York: Springer, 2008: 166- 168.

[2] Abu-Samha M, Madsen L B. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses[J]. Physical Review A, 2011, 84(2): 023411.

    Abu-Samha M, Madsen L B. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses[J]. Physical Review A, 2011, 84(2): 023411.

[3] Peng L Y, Pronin E A, Starace A F. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse[J]. New Journal of Physics, 2008, 10(2): 025030.

    Peng L Y, Pronin E A, Starace A F. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse[J]. New Journal of Physics, 2008, 10(2): 025030.

[4] Chen Z J, Morishita T, Le A T, et al. Analysis of two-dimensional high-energy photoelectron momentum distributions in the single ionization of atoms by intense laser pulses[J]. Physical Review A, 2007, 76(4): 043402.

    Chen Z J, Morishita T, Le A T, et al. Analysis of two-dimensional high-energy photoelectron momentum distributions in the single ionization of atoms by intense laser pulses[J]. Physical Review A, 2007, 76(4): 043402.

[5] Hu S X. Boosting photo absorption by attosecond control of electron correlation[J]. Physical Review Letters, 2013, 111(12): 123003.

    Hu S X. Boosting photo absorption by attosecond control of electron correlation[J]. Physical Review Letters, 2013, 111(12): 123003.

[6] He P L, Ruiz C, He F. Carrier-envelope-phase characterization for an isolated attosecond pulse by angular streaking[J]. Physical Review Letters, 2016, 116(20): 203601.

    He P L, Ruiz C, He F. Carrier-envelope-phase characterization for an isolated attosecond pulse by angular streaking[J]. Physical Review Letters, 2016, 116(20): 203601.

[7] Geng J W, Xiong W H, Xiao X R, et al. Nonadiabatic electron dynamics in orthogonal two-color laser fields with comparable intensities[J]. Physical Review Letters, 2015, 115(19): 193001.

    Geng J W, Xiong W H, Xiao X R, et al. Nonadiabatic electron dynamics in orthogonal two-color laser fields with comparable intensities[J]. Physical Review Letters, 2015, 115(19): 193001.

[8] Wu W Y, He F. Asymmetric photoelectron momentum distribution driven by two-color XUV fields[J]. Physical Review A, 2016, 93(2): 023415.

    Wu W Y, He F. Asymmetric photoelectron momentum distribution driven by two-color XUV fields[J]. Physical Review A, 2016, 93(2): 023415.

[9] Xie H, Li M, Luo S Q, et al. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses[J]. Physical Review A, 2017, 96(6): 063421.

    Xie H, Li M, Luo S Q, et al. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses[J]. Physical Review A, 2017, 96(6): 063421.

[10] Hu S L, Chen J, Hao X L, et al. Effect of two-center interference on molecular ionization in multiphoton ionization regime[J]. Optics Express, 2017, 25(19): 23082-23092.

    Hu S L, Chen J, Hao X L, et al. Effect of two-center interference on molecular ionization in multiphoton ionization regime[J]. Optics Express, 2017, 25(19): 23082-23092.

[11] Zhou Y M, Huang C, Tong A H, et al. Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses[J]. Optics Express, 2011, 19(3): 2301-2308.

    Zhou Y M, Huang C, Tong A H, et al. Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses[J]. Optics Express, 2011, 19(3): 2301-2308.

[12] Paufler W, Boning B, Fritzsche S. Strong-field ionization with twisted laser pulses[J]. Physical Review A, 2018, 97(4): 043418.

    Paufler W, Boning B, Fritzsche S. Strong-field ionization with twisted laser pulses[J]. Physical Review A, 2018, 97(4): 043418.

[13] Ge P P, Han M, Liu M M, et al. Probing time delays and coherent imaging of multiphoton resonant ionization[J]. Physical Review A, 2018, 98(1): 013409.

    Ge P P, Han M, Liu M M, et al. Probing time delays and coherent imaging of multiphoton resonant ionization[J]. Physical Review A, 2018, 98(1): 013409.

[14] Yu X Y, Li M, Han M, et al. Controlling backward-scattering photoelectron holography by attosecond streaking[J]. Physical Review A, 2018, 98(1): 013415.

    Yu X Y, Li M, Han M, et al. Controlling backward-scattering photoelectron holography by attosecond streaking[J]. Physical Review A, 2018, 98(1): 013415.

[15] Zhang H D, Ben S, Xu T T, et al. Photoelectron-momentum distribution of H2+ molecules at different internuclear distances in an elliptically polarized laser field [J]. Physical Review A, 2018, 98(1): 013422.

    Zhang H D, Ben S, Xu T T, et al. Photoelectron-momentum distribution of H2+ molecules at different internuclear distances in an elliptically polarized laser field [J]. Physical Review A, 2018, 98(1): 013422.

[16] Wang Y L, Yu S G, Lai X Y, et al. Separating intracycle interferences in photoelectron momentum distributions by a polarization-gated pulse[J]. Physical Review A, 2018, 98(4): 043422.

    Wang Y L, Yu S G, Lai X Y, et al. Separating intracycle interferences in photoelectron momentum distributions by a polarization-gated pulse[J]. Physical Review A, 2018, 98(4): 043422.

[17] Milosevic D B. Attospin and channel closings in high-order above-threshold ionization by bicircular laser fields[J]. Physical Review A, 2018, 98(5): 053420.

    Milosevic D B. Attospin and channel closings in high-order above-threshold ionization by bicircular laser fields[J]. Physical Review A, 2018, 98(5): 053420.

[18] Wei M Z, Quan W, Sun R P, et al. Two-center interference effect in ionization of diatomic molecules subject to close-to-circularly-polarized femtosecond laser fields[J]. Physical Review A, 2018, 98(6): 063418.

    Wei M Z, Quan W, Sun R P, et al. Two-center interference effect in ionization of diatomic molecules subject to close-to-circularly-polarized femtosecond laser fields[J]. Physical Review A, 2018, 98(6): 063418.

[19] Yuan K J, Chelkowski S, Bandrauk A D. Photoelectron momentum distributions of molecules in bichromatic circularly polarized attosecond UV laser fields[J]. Physical Review A, 2016, 93(5): 053425.

    Yuan K J, Chelkowski S, Bandrauk A D. Photoelectron momentum distributions of molecules in bichromatic circularly polarized attosecond UV laser fields[J]. Physical Review A, 2016, 93(5): 053425.

[20] 冯凤珍, 白丽华, 郑晓晓. 低于阈值激光功率密度下Mg原子的非序列双电离[J]. 光学学报, 2018, 38(7): 0702003.

    冯凤珍, 白丽华, 郑晓晓. 低于阈值激光功率密度下Mg原子的非序列双电离[J]. 光学学报, 2018, 38(7): 0702003.

    Feng F Z, Bai L H, Zheng X X. Nonsequential double ionization of Mg atoms below threshold laser power density[J]. Acta Optica Sinica, 2018, 38(7): 0702003.

    Feng F Z, Bai L H, Zheng X X. Nonsequential double ionization of Mg atoms below threshold laser power density[J]. Acta Optica Sinica, 2018, 38(7): 0702003.

[21] 林志阳, 林宝卿, 陈志心. 中红外波段超快强激光场驱动的原子单电离[J]. 光学学报, 2018, 38(6): 0602001.

    林志阳, 林宝卿, 陈志心. 中红外波段超快强激光场驱动的原子单电离[J]. 光学学报, 2018, 38(6): 0602001.

    Lin Z Y, Lin B Q, Chen Z X. Single ionization of atoms driven by ultrafast intense mid-infrared laser fields[J]. Acta Optica Sinica, 2018, 38(6): 0602001.

    Lin Z Y, Lin B Q, Chen Z X. Single ionization of atoms driven by ultrafast intense mid-infrared laser fields[J]. Acta Optica Sinica, 2018, 38(6): 0602001.

[22] Chen J H, Han M, Xiao X R, et al. Atomic-orbital-dependent photoelectron momentum distributions for F - ions by orthogonal two-color laser fields [J]. Physical Review A, 2018, 98(3): 033403.

    Chen J H, Han M, Xiao X R, et al. Atomic-orbital-dependent photoelectron momentum distributions for F - ions by orthogonal two-color laser fields [J]. Physical Review A, 2018, 98(3): 033403.

[23] Ngoko Djiokap J M, Meremianin A V, Manakov N L, et al. . Kinematical vortices in double photoionization of helium by attosecond pulses[J]. Physical Review A, 2017, 96(1): 013405.

    Ngoko Djiokap J M, Meremianin A V, Manakov N L, et al. . Kinematical vortices in double photoionization of helium by attosecond pulses[J]. Physical Review A, 2017, 96(1): 013405.

[24] Ngoko Djiokap J M, Hu S X, Madsen L B, et al. . Electron vortices in photoionization by circularly polarized attosecond pulses[J]. Physical Review Letters, 2015, 115(11): 113004.

    Ngoko Djiokap J M, Hu S X, Madsen L B, et al. . Electron vortices in photoionization by circularly polarized attosecond pulses[J]. Physical Review Letters, 2015, 115(11): 113004.

[25] Ngoko Djiokap J M, Meremianin A V, Manakov N L, et al. . Multistart spiral electron vortices in ionization by circularly polarized UV pulses[J]. Physical Review A, 2016, 94(1): 013408.

    Ngoko Djiokap J M, Meremianin A V, Manakov N L, et al. . Multistart spiral electron vortices in ionization by circularly polarized UV pulses[J]. Physical Review A, 2016, 94(1): 013408.

[26] Pengel D, Kerbstadt S, Johannmeyer D, et al. Electron vortices in femtosecond multiphoton ionization[J]. Physical Review Letters, 2017, 118(5): 053003.

    Pengel D, Kerbstadt S, Johannmeyer D, et al. Electron vortices in femtosecond multiphoton ionization[J]. Physical Review Letters, 2017, 118(5): 053003.

[27] Delone N B, Krainov V P. AC Stark shift of atomic energy levels[J]. Physics-Uspekhi, 1999, 42(7): 669-687.

    Delone N B, Krainov V P. AC Stark shift of atomic energy levels[J]. Physics-Uspekhi, 1999, 42(7): 669-687.

[28] Yu C, Madsen L B. Sequential and nonsequential double ionization of helium by intense XUV laser pulses: revealing AC Stark shifts from joint energy spectra[J]. Physical Review A, 2016, 94(5): 053424.

    Yu C, Madsen L B. Sequential and nonsequential double ionization of helium by intense XUV laser pulses: revealing AC Stark shifts from joint energy spectra[J]. Physical Review A, 2016, 94(5): 053424.

[29] Autler S H, Townes C H. Stark effect in rapidly varying fields[J]. Physical Review, 1955, 100(2): 703-722.

    Autler S H, Townes C H. Stark effect in rapidly varying fields[J]. Physical Review, 1955, 100(2): 703-722.

[30] Sussman B J. Five ways to the nonresonant dynamic Stark effect[J]. American Journal of Physics, 2011, 79(5): 477-484.

    Sussman B J. Five ways to the nonresonant dynamic Stark effect[J]. American Journal of Physics, 2011, 79(5): 477-484.

[31] Demekhin P V, Cederbaum L S. Dynamic interference of photoelectrons produced by high-frequency laser pulses[J]. Physical Review Letters, 2012, 108(25): 253001.

    Demekhin P V, Cederbaum L S. Dynamic interference of photoelectrons produced by high-frequency laser pulses[J]. Physical Review Letters, 2012, 108(25): 253001.

[32] Etches A, Madsen L B. Extending the strong-field approximation of high-order harmonic generation to polar molecules: gating mechanisms and extension of the harmonic cutoff[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(15): 155602.

    Etches A, Madsen L B. Extending the strong-field approximation of high-order harmonic generation to polar molecules: gating mechanisms and extension of the harmonic cutoff[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(15): 155602.

[33] Milosevic M Z, Simonovic N S. Calculations of rates for strong-field ionization of alkali-metal atoms in the quasistatic regime[J]. Physical Review A, 2015, 91(2): 023424.

    Milosevic M Z, Simonovic N S. Calculations of rates for strong-field ionization of alkali-metal atoms in the quasistatic regime[J]. Physical Review A, 2015, 91(2): 023424.

[34] Yu C, Fu N, Zhang G Z, et al. Dynamic Stark effect on XUV-laser-generated photoelectron spectra: numerical experiment on atomic hydrogen[J]. Physical Review A, 2013, 87(4): 043405.

    Yu C, Fu N, Zhang G Z, et al. Dynamic Stark effect on XUV-laser-generated photoelectron spectra: numerical experiment on atomic hydrogen[J]. Physical Review A, 2013, 87(4): 043405.

[35] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JEPT, 1965, 20(5): 1307-1314.

    Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet Physics JEPT, 1965, 20(5): 1307-1314.

[36] Faisal F H M. Multiple absorption of laser photons by atoms[J]. Journal of Physics B: Atomic and Molecular Physic, 1973, 6(4): L89-L92.

    Faisal F H M. Multiple absorption of laser photons by atoms[J]. Journal of Physics B: Atomic and Molecular Physic, 1973, 6(4): L89-L92.

[37] Reiss H R. Effect of an intense electromagnetic field on a weakly bound system[J]. Physical Review A, 1980, 22(5): 1786-1813.

    Reiss H R. Effect of an intense electromagnetic field on a weakly bound system[J]. Physical Review A, 1980, 22(5): 1786-1813.

[38] Lewenstein M, Salières P. L’Huillier A. Phase of the atomic polarization in high-order harmonic generation[J]. Physical Review A, 1995, 52(6): 4747-4754.

    Lewenstein M, Salières P. L’Huillier A. Phase of the atomic polarization in high-order harmonic generation[J]. Physical Review A, 1995, 52(6): 4747-4754.

[39] 吴金香, 王国利, 吕向向, 等. 用强场近似方法研究强激光场中H原子的电离[J]. 原子与分子物理学报, 2011, 28(2): 277-281.

    吴金香, 王国利, 吕向向, 等. 用强场近似方法研究强激光场中H原子的电离[J]. 原子与分子物理学报, 2011, 28(2): 277-281.

    Wu J X, Wang G L, Lü X X, et al. Study on ionization of H atoms by intense laser fields with strong-field approximation method[J]. Journal of Atomic and Molecular Physics, 2011, 28(2): 277-281.

    Wu J X, Wang G L, Lü X X, et al. Study on ionization of H atoms by intense laser fields with strong-field approximation method[J]. Journal of Atomic and Molecular Physics, 2011, 28(2): 277-281.

[40] Li M, Zhang G Z, Kong X L, et al. Dynamic Stark induced vortex momentum of hydrogen in circular fields[J]. Optics Express, 2018, 26(2): 878-886.

    Li M, Zhang G Z, Kong X L, et al. Dynamic Stark induced vortex momentum of hydrogen in circular fields[J]. Optics Express, 2018, 26(2): 878-886.

[41] Hasovic E, Busuladzic M, Gazibegovic-Busuladzic A, et al. Simulation of above-threshold ionization experiments using the strong-field approximation[J]. Laser Physics, 2007, 17(4): 376-389.

    Hasovic E, Busuladzic M, Gazibegovic-Busuladzic A, et al. Simulation of above-threshold ionization experiments using the strong-field approximation[J]. Laser Physics, 2007, 17(4): 376-389.

[42] Yu C, Madsen L B. Above-threshold ionization of helium in the long-wavelength regime: examining the single-active-electron approximation and the two-electron strong-field approximation[J]. Physical Review A, 2017, 95(6): 063407.

    Yu C, Madsen L B. Above-threshold ionization of helium in the long-wavelength regime: examining the single-active-electron approximation and the two-electron strong-field approximation[J]. Physical Review A, 2017, 95(6): 063407.

[43] Hasovic E, Busuladzic M, Becker W, et al. Dressed-bound-state molecular strong-field approximation: application to above-threshold ionization of heteronuclear diatomic molecules[J]. Physical Review A, 2011, 84(6): 063418.

    Hasovic E, Busuladzic M, Becker W, et al. Dressed-bound-state molecular strong-field approximation: application to above-threshold ionization of heteronuclear diatomic molecules[J]. Physical Review A, 2011, 84(6): 063418.

[44] 刘璐, 赵松峰, 李鹏程, 等. 激光的组合场相对相位对CO分子产生阿秒脉冲的影响[J]. 中国激光, 2013, 40(9): 0902002.

    刘璐, 赵松峰, 李鹏程, 等. 激光的组合场相对相位对CO分子产生阿秒脉冲的影响[J]. 中国激光, 2013, 40(9): 0902002.

    Liu L, Zhao S F, Li P C, et al. Influence of relative carrier envelope phases on attosecond pulse generation from CO molecule exposed to a combined field of lasers[J]. Chinese Journal of Lasers, 2013, 40(9): 0902002.

    Liu L, Zhao S F, Li P C, et al. Influence of relative carrier envelope phases on attosecond pulse generation from CO molecule exposed to a combined field of lasers[J]. Chinese Journal of Lasers, 2013, 40(9): 0902002.

[45] Milosevic D B, Paulus G G, Bauer D, et al. Above-threshold ionization by few-cycle pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(14): R203-R262.

    Milosevic D B, Paulus G G, Bauer D, et al. Above-threshold ionization by few-cycle pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(14): R203-R262.

[46] Xie X H, Wang T, Yu S G, et al. Disentangling intracycle interferences in photoelectron momentum distributions using orthogonal two-color laser fields[J]. Physical Review Letters, 2017, 119(24): 243201.

    Xie X H, Wang T, Yu S G, et al. Disentangling intracycle interferences in photoelectron momentum distributions using orthogonal two-color laser fields[J]. Physical Review Letters, 2017, 119(24): 243201.

[47] Han M, Ge P P, Shao Y, et al. Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity[J]. Physical Review Letters, 2017, 119(7): 073201.

    Han M, Ge P P, Shao Y, et al. Revealing the sub-barrier phase using a spatiotemporal interferometer with orthogonal two-color laser fields of comparable intensity[J]. Physical Review Letters, 2017, 119(7): 073201.

[48] Ivanov I A, Nam C H, Kim K T. Photoionization in the presence of circularly polarized fundamental and odd-order harmonic fields[J]. Physical Review A, 2017, 95(5): 053401.

    Ivanov I A, Nam C H, Kim K T. Photoionization in the presence of circularly polarized fundamental and odd-order harmonic fields[J]. Physical Review A, 2017, 95(5): 053401.

[49] Han M, Ge P P, Shao Y, et al. Attoclock photoelectron interferometry with two-color corotating circular fields to probe the phase and the amplitude of emitting wave packets[J]. Physical Review Letters, 2018, 120(7): 073202.

    Han M, Ge P P, Shao Y, et al. Attoclock photoelectron interferometry with two-color corotating circular fields to probe the phase and the amplitude of emitting wave packets[J]. Physical Review Letters, 2018, 120(7): 073202.

[50] Liu M M, Shao Y, Han M, et al. Energy- and momentum-resolved photoelectron spin polarization in multiphoton ionization of Xe by circularly polarized fields[J]. Physical Review Letters, 2018, 120(4): 043201.

    Liu M M, Shao Y, Han M, et al. Energy- and momentum-resolved photoelectron spin polarization in multiphoton ionization of Xe by circularly polarized fields[J]. Physical Review Letters, 2018, 120(4): 043201.

[51] Tulsky V A, Almajid M A, Bauer D. Two-color phase-of-the-phase spectroscopy with circularly polarized laser pulses[J]. Physical Review A, 2018, 98(5): 053433.

    Tulsky V A, Almajid M A, Bauer D. Two-color phase-of-the-phase spectroscopy with circularly polarized laser pulses[J]. Physical Review A, 2018, 98(5): 053433.

孔雪莲, 张贵忠, 汪天庆, 丁欣, 姚建铨. 由动态Stark效应诱导的氢原子涡旋动量分布[J]. 光学学报, 2019, 39(6): 0602001. Xuelian Kong, Guizhong Zhang, Tianqing Wang, Xin Ding, Jianquan Yao. Dynamic-Stark-Effect Induced Distortion of Vortex Momentum Distributions of Hydrogen Atoms[J]. Acta Optica Sinica, 2019, 39(6): 0602001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!