人工晶体学报, 2020, 49 (4): 665, 网络出版: 2020-06-15  

叶片状Zn-N共掺杂的碳用于高效氧还原反应

Zn-N Codoped Carbon with Leaf-shaped for Highly Efficient Oxygen Reduction Reaction
作者单位
1 西安航空职业技术学院航空维修工程学院,西安 710089
2 西北大学化学与材料科学学院,合成与天然功能分子化学教育部重点实验室,西安 710069
摘要
开发具有氧还原性能的碳基催化剂,以替代昂贵且不稳定的铂基催化剂,对于它们在能量转换和存储中的最佳利用至关重要。本论文叶片状Zn,N共掺杂的碳基 (Zn-N codoped C)材料通过在NH3条件下,热处理叶片状沸石咪唑酯框架(ZIF-L)获得,结果表明,Zn-N共掺杂碳具有优越的氧还原性能,起始过电压为0.95 V,半波电位0.80 V,极限电流密度5.57 mA?cm-2,在碱性条件下,性能类似商业Pt/C催化剂性能。
Abstract
The development of carbon-based oxygen reduction reaction (ORR) catalysts to substitute the expensive and unstable platinum-based ORR catalysts is of great importance for their optimal utilization in energy conversion and storage. Here, Zn, N codoped carbon with leaf-shaped was prepared using leaf-shaped Zeolitic Imidazolate Framework (ZIF-L) as precursor via thermal annealing under NH3. As a result, the as-synthesized Zn-N-C presents outstanding ORR onset-potential (0.95 V), half-wave potential (0.80 V), and diffusion limiting current density (5.57 mA?cm-2), that is similar to that at commercial Pt/C catalyst in alkaline electrolyte.
参考文献

[1] Xia W, Zou R, An L, et al. A metal-organic framework route to in situ encapsulation of Co@Co3O4@Core@ bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction[J].Energy & Environmental Science,2015,8(2):568-576.

[2] Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction[J].Angewandte Chemie International Edition,2013,52(33):8526-8544.

[3] Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J].Angewandte Chemie International Edition,2012,51(16):3892-3896.

[4] Park H, Oh S, Lee S, et al. Cobalt-and nitrogen-codoped porous carbon catalyst made from core-shell type hybrid metal-organic framework (ZIF-L@ ZIF-67) and its efficient oxygen reduction reaction (ORR) activity[J].Applied Catalysis B:Environmental,2019,246:322-329.

[5] Liang Y, Li Y, Wang H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J].Nature Materials,2011,10(10):780.

[6] Hijazi I, Bourgeteau T, Cornut R, et al. Carbon nanotube-templated synthesis of covalent porphyrin network for oxygen reduction reaction[J].Journal of the American Chemical Society,2004,136(17):6348-6354.

[7] Lee K R, Kang E S, Kim Y T, et al. Enhancement of catalytic activity of a programmed gold nanoparticle superstructure modulated by supramolecular protein assembly[J].Catalysis Today,2017,295:95-101.

[8] Sun J, Lowe S E, Zhang L, et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media[J].Angewandte Chemie,2018,130(50):16749-16753.

[9] Yan D, Guo L, Xie C, et al. N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction[J].Science China Materials,2018,61(5):679-685.

[10] Wang Y, Tao L, Xiao Z, et al. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks[J].Advanced Functional Materials,2018,28(11):1705356.

[11] Ye L, Chai G, Wen Z. Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction[J].Advanced Functional Materials,2017,27(14):1606190.

[12] Zhang W, Yao X, Zhou S, et al. ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst[J]. Small, 2018,14(24):1800423.

[13] Park K S, Ni Z, Cté A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J].Proceedings of the National Academy of Sciences,2006,103(27):10186-10191.

[14] Dou S, Li X, Tao L, et al. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis[J].Chemical Communications,2016,52(62):9727-9730.

[15] Li R, Wang X, Dong Y, et al. Nitrogen-doped carbon nanotubes decorated with cobalt nanoparticles derived from zeolitic imidazolate framework-67 for highly efficient oxygen reduction reaction electrocatalysis[J].Carbon,2018,132:580-588.

[16] Zhang H, Osgood H, Xie X, et al. Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks[J].Nano Energy,2017,31:331-350.

[17] Wang R, Dong X Y, Du J, et al. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction[J].Advanced Materials, 2018,30(6):1703711.

[18] Zhang M, Dai Q, Zheng H, et al. Novel MOF-derived Co@ N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J].Advanced Materials,2018,30(10):1705431.

[19] Qu Y, Li Z, Chen W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J].Nature Catalysis,2018,1(10):781-786.

[20] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323(5915):760-764.

[21] Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction[J].Journal of Catalysis,2006,239(1):83-96.

[22] Jaouen F, Marcotte S, Dodelet J P, et al. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports[J].The Journal of Physical Chemistry B,2003,107(6):1376-1386.

[23] Yin H, Zhang C, Liu F, et al. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction[J].Advanced Functional Materials,2014,24(20):2930-2937.

[24] Han X, Sun L, Wang F, et al. MOF-derived honeycomb-like-N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries[J].Journal of Materials Chemistry A,2018,6(39):18891-18897.

[25] Zhang J, Zhang C, Zhao Y, et al. Three dimensional few-layer porous carbon nanosheets towards oxygen reduction[J].Applied Catalysis B:Environmental,2017,211:148-156.

[26] Zhu J, Li W, Li S, et al. Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-Air Batteries[J].Small,2018,14(21):1800563.

[27] Chen Y Z, Wang C, Wu Z Y, et al. From bimetallic metal-organic framework to porous carbon:high surface area and multicomponent active dopants for excellent electrocatalysis[J].Advanced Materials,2015,27(34):5010-5016.

[28] Hu Q, Li G, Li G, et al. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn-air batteries[J]. Advanced Energy Materials,2019,9(14):1803867.

刁金香, 王凡, 刘肖杰. 叶片状Zn-N共掺杂的碳用于高效氧还原反应[J]. 人工晶体学报, 2020, 49(4): 665. DIAO Jinxiang, WANG Fan, LIU Xiaojie. Zn-N Codoped Carbon with Leaf-shaped for Highly Efficient Oxygen Reduction Reaction[J]. Journal of Synthetic Crystals, 2020, 49(4): 665.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!