强激光与粒子束, 2013, 25 (8): 1979, 网络出版: 2013-08-01  

基于微流控装置制备聚丙烯腈靶用微胶囊

Fabrication of polyacrylonitrile microcapsule for inertial confinement fusion based on microfluidic device
作者单位
东南大学 生物科学与医学工程学院, 生物电子学国家重点实验室, 南京 210096
摘要
对惯性约束聚变靶用聚合物微胶囊的制备方法进行了研究,设计了一种基于双T型结构的微通道乳化装置,用于制备稳定的双重乳液。使用玻璃毛细管作为中间相溶液的微通道,可以提高三相流速的调节范围,从而加大乳液尺寸分布范围。三相溶液密度差异小,因此乳液的同心度可以逐渐自发调整。通过调节不同的固化转速,发现在55 r/min下微球的同心度达到最佳,超过98.7%。使用扫描电镜对靶丸进行形貌和X射线能量色散谱分析表明,超临界干燥方法可以同时满足去除内部溶剂和保持靶丸结构不受破坏的要求。最终成功制得了粒径300~1000 μm、壁厚20~300 μm的聚丙烯腈空心微胶囊。
Abstract
In this experiment, our group studied the preparation methods of inertial confinement fusion polymer microcapsules, and designed a T-junction structure based on dual microchannel device, which was used for the preparation of stable double-emulsion. A glass capillary tube was chosen as the microchannel of middle phase solution, which increased velocity regulation range of three phase solutions, and broadened the size of emulsions. Because of the tiny discrepancy among three phase solutions, the concentricity of the double emulsions improved automatically. Various speeds of solidification were regulated, and the concentricity of the microspheres was optimized under 55 r/min, which was more than 98.7%. Scanning electron microscopy morphology and energy dispersive spectroscopy of dried pellet show that the supercritical drying meets the requirements to remove internal solvent and keeps the pellet structure from destruction. Finally, polyacrylonitrile hollow microcapsules with a size of 300-1000 μm and a shell thickness of 20-300 μm were successfully fabricated.
参考文献

[1] Fagalg R L, Brown L C, Stephens R B, et al. Inertial confinement fusion target insertion via augmented mass free fall[C]//Proceedings-Symposium on Fusion Engineering. 1995, 1: 26-28.

[2] 张占文, 李波, 唐永建, 等.激光聚变靶用空心玻璃微球制备方法[J]. 硅酸盐学报, 2007, 35(7):934-938.(Zhang Zhanwen, Li Bo, Tang Yongjian, et al. Preparation methods of hollow glass microspheres used for laser fusion targets. Journal of the Chinese Ceramic Society, 2007, 35(7): 934-938)

[3] Paguio R R, Frederick C A, Hund J F, et al. Fabrication capabilities for spherical foam targets used in ICF experiments[R].GA-A25228,2005.

[4] Diana S C, Overturf G E, Reibold R, et a1.Hollow foam microshells for liquid-layered cryogenic inertial confinement fusion targets[J].Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(5): 2564-2568.

[5] Jaquez J S, Alfonso E, Nikroo A, et al. Alumium coatings as a deuterium permeation barrier on foam shells and the dependence on foam surface finish[J].Fusion Science and Technology, 2007, 51(5): 688-692.

[6] Yamanaka C. Inertial fusion research over the past 30 years[J].Fusion Engineering and Design, l999, 44(1/4):1-12.

[7] Steinman D. Inertial confinement fusion target component fabrication and technology development support[R]. GA-A-21203, 1993.

[8] Schultz K R, Kaae J L, Miller W J, et al. Status of inertial fusion target fabrication in the USA[R]. GA-A22610,1997.

[9] Nelson D, Soane D.Inertial confinement fusion target component fabrication and technology development[R].GA-A21647,1994.

[10] Okushima S, Nisisako T, Torii T, et al. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices[J].Langmuir, 2004, 20(23): 9905-9908.

施展, 葛丽芹. 基于微流控装置制备聚丙烯腈靶用微胶囊[J]. 强激光与粒子束, 2013, 25(8): 1979. Shi Zhan, Ge Liqin. Fabrication of polyacrylonitrile microcapsule for inertial confinement fusion based on microfluidic device[J]. High Power Laser and Particle Beams, 2013, 25(8): 1979.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!