红外与毫米波学报, 2012, 31 (6): 536, 网络出版: 2012-12-24  

森林冠层氮含量遥感估算

Estimation of forest canopy nitrogen content based on remote sensing
作者单位
1 中国科学院海洋研究所, 山东 青岛 266071
2 中国科学院研究生院, 北京 100049
3 东北林业大学, 黑龙江 哈尔滨 150040
摘要
使用高光谱数据估算叶片与冠层尺度的森林氮含量.首先采用基于高斯误差函数的BP神经网络Erf-BP建立叶片尺度氮含量的遥感估算模型;其次根据几何光学模型原理, 推导冠层光谱与叶片光谱的尺度转化函数, 将Hyperion影像的冠层光谱转换到叶片尺度并反演叶片尺度的氮含量;最后, 利用森林结构参数LAI得到研究区域冠层尺度氮含量.结果表明, 隐含层包含8个神经元的Erf-BP模型最优, 检验精度为76.8597%;利用尺度转化函数估算670 nm和865 nm冠层光谱与实测光谱决定系数为0.5203和0.4117;反演叶片尺度氮含量与实测数据的决定系数为0.7019;该方法为高精度快速估算叶片和冠层尺度森林氮含量提供参考.
Abstract
Hypespectral data was used to estimate leaf and canopy nitrogen content. Erf-BP, an improved model based on the Gaussian error function of BP neural network, was used to develop remote sensing models for estimating leaf nitrogen content. Then the scaling conversion function during downscales from canopy to leaf spectral was derived according to principles of geometric optics model. These relations were used during downscales from the canopy reflectance of Hyperion image to leaf spectral for leaf nitrogen content estimation. Finally, forest structural parameter leaf area index (LAI) was used to obtain canopy nitrogen content from leaf level. The results showed that the best Erf-BP neural network model with testing accuracy of 76.8597% includes 8 neurons in hidden layer. Using scaling conversion function to estimate canopy spectra at 670nm and 865nm, correlations (R2) between modeling spectra and measurements were 0.5203 and 0.4117 respectively. Correlation coefficient between estimated leaf nitrogen content and measurements was 0.7019. This method provides a good reference for more rapid and accurate estimation of leaf and canopy nitrogen.
参考文献

[1] Penning de Vries F W, Brunsting A H, Van Laar H H. Products, requirements and efficiency of biosynthesis: a quantitative approach [J]. Journal of Theoretical Biology, 1974, 45(2):339-377.

[2] Penning de Vries F W. The cost of maintenance processes in plant cells [J]. Annals of Botany, 1975, 39(1):77-92.

[3] WANG Yuan. Information extraction of rape nitrogen concentration using remotely sensed data at different levels [D]. Hangzhou: Zhejiang University(王渊.不同水平油菜氮素含量遥感信息提取方法研究.杭州:浙江大学), 2008.

[4] SUN Xi, LIN Rong-Xin, MA Guo-Rui. Nitrogen nutrition of paddy rice plant and its diagnosis [J]. Journal of Zhejiang Agricultural University(孙羲,林荣新,马国瑞. 水稻氮素营养及其诊断. 浙江农业大学学报), 1981,7(2):41-50.

[5] Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the oregon transect [J]. Remote Sensing of Environment. 1994, 47(2):216-230.

[6] Matson P, Johnson L, Billow C, et al. Seasonal patterns and remote spectral estimation of canopy chemistry across the oregon transect [J]. Ecological Applications. 1994,4(2):280-298.

[7] Huang Z, Turner B J, Dury S J, et al. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis [J]. Remote Sensing of Environment. 2004, 93(1-2):18-29.

[8] Smith M, Ollinger S V, Martin M E, et al. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen [J]. Ecological Applications. 2002, 12(5):1286-1302.

[9] Zhang Y Q, Chen J M, Miller J R, et al. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery [J]. Remote Sensing of Environment. 2008, 112(7):3234-3247.

[10] Mokhele T A, Ahmed F B. Estimation of leaf nitrogen and silicon using hyperspectral remote sensing [J]. Journal of Applied Remote Sensing. 2010, 4(043560):1-18.

[11] Fitzgerald G, Rodriguez D, O'leary G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index-The Canopy Chlorophyll Content Index (CCCI) [J]. Field Crops Research.2010, 116(3):318-324.

[12] Rao N R, Garg P K, Ghosh S K, et al. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery [J]. Journal of Agricultural Science. 2008, 146(1): 65-75.

[13] YANG Xi-Guang. Study on estimation of forest canopy chlorophyll and nitrogen content by hyperspectral data [D]. Harbin: Northeast Forestry University(杨曦光.高光谱数据提取森林冠层叶绿素及氮含量的研究.哈尔滨: 东北林业大学),2010.

[14] Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images [J]. Remote Sensing of Environment.1996, 55(2):153-162.

[15] TAN Bing-Xiang, LI Zeng-Yuan, CHEN Er-Xue, et al. Preprocessing of EO-1 Hyperion hyperspectral data [J]. Remote Sensing Information(谭炳香,李增元,陈尔学,等. EO-1 Hyperion高光谱数据的预处理. 遥感信息).2005,(6):36-41.

[16] YANG Xi-Guang, FAN Wen-Yi, YU Ying. Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL model[J].Spectroscopy and Spectral Analysis (杨曦光,范文义,于颖. 基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演.光谱学与光谱分析), 2010,30(11):3022-3026.

[17] YANG Bo, WANG Ya-Dong, SU Xiao-Hong. An algorithm for fast convergence of back propagation by enlarging error [J]. Journal of Computer Research and Development (杨博,王亚东,苏小红.一种基于误差放大的快速BP学习算法.计算机研究与发展), 2004,41(5):774-779.

[18] XU Xiao-Jun. Study on estimation of aboveground carbon storage of Moso Bamboo forest based on LANDSAT TM image [D].Hangzhou: Zhejiang Agriculture and Forestry University(徐小军.基于LANDSAT TM影像毛竹林地上部分碳储量估算研究.杭州: 浙江农林大学),2010.

[19] XU Xiao-Jun, DU Hua-Qiang, ZHOU Guo-Mo, et al. Spectral mixture analysis based on Erf-BP model and applied in extracting forest information [J]. Scientia Silvae Sinicae(徐小军,杜华强,周国模等.Erf-BP混合像元分解及在森林遥感信息提取中应用.林业科学), 2011,47(2):30-38.

[20] FAN Wen-Yi, ZHANG Hai-Yu, YU Ying, et al. Comparison of three models of forest biomass estimation [J]. Chinese Journal of Plant Ecology(范文义,张海玉,于颖等.三种森林生物量估测模型的比较分析.植物生态学报),2011,35(4): 402-410.

[21] Li X, Strahler A H. Modeling the gap probability of a discontinuous vegetation canopy [J]. IEEE Transactions on Geoscience and Remote Sensing.1988, 26(2):161-170.

[22] Li X, Strahler A H, Woodcook C E. A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies [J]. IEEE Transactions on Geoseience and Remote Sensing.1995, 33(2):466-480.

[23] Chen J M, Leblanc S G. A 4-scale bidirectional reflection model based on canopy architecture [J]. IEEE Transactions on Geoscience and Remote Sensing.1997, 35(5):1316-1337.

[24] XU Xi-Ru. Remote sensing physics [M]. Beijing: Peking University Press(徐希孺.遥感物理.北京:北京大学出版社), 2005:44-71.

[25] Yang X G, Fan W Y, Yu Y. Leaf and canopy chlorophyll content retrieval from hyperspectral remote sensing imagery[C]. IEEE Sensors Applications Symposium (SAS), 23rd-25th February, . Piscataway: IEEE Press, 2010:50-53.

[26] WU Chang-You. The research and application on neural network [D]. Harbin: Northeast Agriculture University(吴昌友.神经网络的研究及应用.哈尔滨: 东北农业大学), 2007.

杨曦光, 于颖, 黄海军, 范文义. 森林冠层氮含量遥感估算[J]. 红外与毫米波学报, 2012, 31(6): 536. YANG Xi-Guang, YU Ying, HUANG Hai-Jun, FAN Wen-Yi. Estimation of forest canopy nitrogen content based on remote sensing[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 536.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!