光谱学与光谱分析, 2012, 32 (11): 3107, 网络出版: 2012-11-22  

基于TDLAS-bLS方法的夏玉米农田氨挥发研究

Use of Open-Path TDL Technique and the Backward Lagrangian Stochastic Model to Monitor Ammonia Emission from Summer Maize Field
作者单位
1 封丘农业生态实验站、 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所), 江苏 南京210008
2 南京农业大学资源与环境科学学院, 江苏 南京210095
3 中国科学院安徽光学精密机械研究所, 安徽 合肥230031
摘要
采用开放光程可调谐二极管激光吸收光谱技术和反向拉格朗日随机扩散模型, 通过田间试验, 开展基于高时间分辨率数据的农田氨挥发研究, 旨在为揭示农田氨挥发的动态变化规律提供新技术新方法。 结果表明, TDLAS-bLS法能有效监测农田氨挥发动态, 尤其是日内变化规律。 豫北平原潮土农田夏玉米追肥后日内氨挥发有两个挥发峰值, 分别在9:00和14:00左右, 第一个高峰是由于夜晚溶解在露水中的氨气随露水蒸发而再次挥发, 第二个高峰受地温和光照影响所致。 追肥后氨挥发速率迅速升高, 但挥发高峰期持续时间较短, 集中于前四天, 整个监测期内氨挥发损失约25.3%。 TDLAS-bLS法与通气法相比, 测定结果有一定差异。
Abstract
The backward Lagrangian stochastic dispersion model in conjunction with open-path tunable diode absorption spectroscopy was used to quantify ammonia emissions from farmland based on the high-temporal resolution data, aiming to provide innovative achievements to diagnose patterns of ammonia flux. The results indicate that the bLS dispersion technique using open-path lasers to measure atmospheric ammonia concentrations is suitable for determining ammonia emissions from farmland continuously, especially for characterizing diurnal characteristics of NH3 emissions. The ammonia emissions have a significant diurnal pattern with two emission peaks from urea applied to maize on a calcareous sandy loam fluvo-aquic soil in the North China Plain. We believe that the first peak starting at approximately 9:00 am is due to NH3 absorbed by the dew re-emission at night as the dew evaporates. The maximum of ammonia flux at 14:00 corresponds to the peak of soil temperature and solar radiation. The ammonia emission increased rapidly, but the duration of emission peaks lasted approximately 4 d. Cumulative NH3 emission was 25.3% of the applied N over the entire measurement period. The NH3 emissions measured with bLS dispersion technique and venting method had certain difference.
参考文献

[1] Binkley D, Richter D. Advances in Ecological Research, 1987, 16: 1.

[2] Van Breemen N, Van Dijk H F G. Environmental Pollution, 1988, 54: 249.

[3] Bouwman A F, Lee D S, Asman W A H, et al. Global Biogeochemical Cycles, 1997, 11: 561.

[4] Denmead O T, Raupach M R. American Society of Agronomy Special Publication, 1993, 55: 19.

[5] Denmead O T, Freney J R, Simpson J R. Soil Science Society of America Journal, 1982, 46: 149.

[6] Werle P. Spectrochimica Acta, 1998, A54: 197.

[7] Flesch T K, Wilson J D, Harper L A, et al. Journal of Applied Meteorology, 2004, 43: 487.

[8] Johannes Laubach, Francis M Kelliher. Agricultural and Forest Meteorology, 2005, 135: 340.

[9] Gao Zhiling, Matthias Mauder, Raymond L Desjardins, et al. Agricultural and Forest Meteorology, 2009, 149: 1516.

[10] Flesch T K, Wilson J D, Yee E. Journal of Applied Meteorology, 1995, 34: 1320.

[11] Garratt J R. The Atmospheric Boundary Layer. Cambridge University Press, 1992, 316.

[12] WANG Zhao-hui, LIU Xue-jun, JU Xiao-tang (王朝辉, 刘学军, 巨晓棠, 等). Plant Nutrition and Fertilizer Science(植物营养与肥料学报), 2002, 8(2): 205.

[13] Freney J R, Simpson J R, Denmead O T. Gaseous Loss of Nitrogen from Plant-Soil Systems. Hague: Martinus Nijhoff/Dr. W Junk Publishers, 1983. 1.

[14] Parton W J, Morgan J A, Altenhofen J M, et al. Agronomy Journal, 1988, 80: 419.

[15] Harper L A,Sharpe R R,Langdale G W, et al. Agronomy Journal, 1987, 79: 965.

杨文亮, 朱安宁, 张佳宝, 张玉钧, 何莹, 王立明, 陈效民, 陈文超. 基于TDLAS-bLS方法的夏玉米农田氨挥发研究[J]. 光谱学与光谱分析, 2012, 32(11): 3107. YANG Wen-liang, ZHU An-ning, ZHANG Jia-bao, ZHANG Yu-jun, HE Ying, WANG Li-ming, CHEN Xiao-min, CHEN Wen-chao. Use of Open-Path TDL Technique and the Backward Lagrangian Stochastic Model to Monitor Ammonia Emission from Summer Maize Field[J]. Spectroscopy and Spectral Analysis, 2012, 32(11): 3107.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!