Journal of Innovative Optical Health Sciences, 2017, 10 (3): 1750001, Published Online: Dec. 27, 2018  

A novel image fusion algorithm based on 2D scale-mixing complex wavelet transform and Bayesian MAP estimation for multimodal medical images

Author Affiliations
1 Department of Electrical Engineering, University of Bordj, Bou Arreridj, 34030 El Anasser, Algeria
2 Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland
Abstract
In this paper, we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform (2D-SMCWT). The fusion of the detail 2D-SMCWT coefficients is performed via a Bayesian Maximum a Posteriori (MAP) approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients. For the approximation coefficients, a new fusion rule based on the Principal Component Analysis (PCA) is applied. We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method. The obtained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics. Robustness of the proposed method is further tested against different types of noise. The plots of fusion metrics establish the accuracy of the proposed fusion method.
References

[1] Q. Wang, S. Li, H. Qin, A. Hao , “Robust multi-modal medical image fusion via anisotropic heat diffusion guided low-rank structural analysis,” Inf. Fusion 26, 103–121 (2015).

[2] D. Delbeke, R. E. Coleman, M. J. Guiberteau, M. L. Brown, H. D. Royal, B. a Siegel, D. W. Townsend, L. L. Berland, J. A. Parker, G. Zubal, V. Cronin , “Procedure guideline for SPECT/CT imaging 1.0,” J. Nucl. Med. 47, 1227–1234 (2006). ISI,

[3] P. Ganasala, V. Kumar , “CT and MR image fusion scheme in nonsubsampled contourlet transform domain,” J. Digit. Imaging 27, 407–418 (2014).

[4] W. Ha, P. H. Gowda, T. A. Howell , “A review of potential image fusion methods for remote sensing-based irrigation management: Part II,” Irrig. Sci. 31, 851–869 (2013).

[5] N. Uniyal, S. K. Verma , “Image fusion using morphological pyramid consistency method,” International Journal of Computer Applications 95, 34–38 (2014). Crossref,

[6] K. Amolins, Y. Zhang, P. Dare , “Wavelet based image fusion techniques — An introduction, review and comparison,” ISPRS J. Photogramm. Remote Sens. 62, 249–263 (2007).

[7] H. Li, B. S. Manjunath, S. K. Mitra , “Multisensor image fusion using the wavelet transform,” Graphical Models and Image Processing 57, 235–245 (1995). Crossref,

[8] L. Chiorean, M.-F. Vaida , Medical image fusion based on discrete wavelet transform using Java technology, Proc. ITI 2009 31st Int. Conf. Information Technology Interfaces, pp. 55–60 (2009).

[9] Y. Bo, J. Zhongliang, Z. Haitao , “Review of Pixel-Level Image Fusion, ” J. Shanghai Jiaotong Univ. (Sci.) 15, 6–12 (2010). Crossref,

[10] J. J. Lewis, R. J. O’Callaghan, S. G. Nikolov, D. R. Bull, N. Canagarajah , “Pixel- and region-based image fusion with complex wavelets,” Inf. Fusion 8, 119–130 (2007).

[11] J. Liu, P. Moulin , “Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients,” IEEE Trans. Imag. Process. 10, 1647–1658 (2001).

[12] S. Yin, L. Cao, Y. Ling, G. Jin , “Fusion of noisy infrared and visible images based on anisotropic bivariate shrinkage,” Infrared Phys. Technol. 54, 13–20 (2011).

[13] J. Yang, R. S. Blum , A statistical signal processing approach to image fusion using Hidden Markov Models, Multi-Sensor Image Fusion and Its Applications, pp. 256–287, Marcel Dekker/CRC (2005).

[14] S. Roy, T. Howlader, S. M. M. Rahman , “Image fusion technique using multivariate statistical model for wavelet coefficients,” Signal, Image Video Process. 7, 355–365 (2011).

[15] S. M. Mahbubur Rahman, M. Omair Ahmad, M. N. S. Swamy , “Contrast–based fusion of noisy images using discrete wavelet transform,” IET Image Process. 4, 374–384 (2010).

[16] A. Loza, D. Bull, N. Canagarajah, A. Achim , “Non-Gaussian model-based fusion of noisy images in the wavelet domain,” Comput. Vis. Image Underst. 114, 54–65 (2010).

[17] R. Singh, A. Khare , “Fusion of multimodal medical images using Daubechies complex wavelet transform — A multiresolution approach,” Inf. Fusion 19, 49–60 (2014).

[18] N. Kingsbury , “Image processing with complex wavelets,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357, 2543–2560 (1999).

[19] M. L. Gavrilova, C. J. K. Tan, K. Saeed, N. Chaki, S. H. Shaikh , Transactions on Computational Science XXV, Vol 9030, Springer, New York (2015). Crossref,

[20] N. Kingsbury , “Complex wavelets for shift invariant analysis and filtering of signals,” Appl. Comput. Harmon Anal. 10, 234–253 (2001).

[21] A. L. Da Cunha, J. Zhou, M. N. Do , “The nonsubsampled contourlet transform: Theory, design, and applications,” IEEE Trans. Image Process. 15, 3089–3101 (2006).

[22] Q. Miao, C. Shi, P. Xu, M. Yang, Y. Shi , “A novel algorithm of image fusion using shearlets,” Opt. Commun. 284, 1540–1547 (2011).

[23] Y. Yang, Y. Que, S. Huang, P. Lin , “Multimodal sensor medical image fusion based on type-2 fuzzy logic in NSCT domain,” IEEE Sens. J. 16, 3735–3745 (2016).

[24] G. Bhatnagar, Q. M. J. Wu, Z. Liu , “A new contrast based multimodal medical image fusion framework,” Neurocomputing 157, 143–152 (2015).

[25] P. Ramírez-Cobo, K. S. Lee, A. Molini, A. Porporato, G. Katul, B. Vidakovic , “A wavelet-based spectral method for extracting self-similarity measures in time-varying two-dimensional rainfall maps,” J. Time Ser. Anal. 32, 351–363 (2011).

[26] N. Remenyi, O. Nicolis, G. Nason, B. Vidakovic , “Image denoising with 2D scale-mixing complex wavelet transforms,” IEEE Trans. Image Process. 23, 5165–5174 (2014).

[27] S. Mallat , A Wavelet Tour Signal Process, Academic Press, California (1999).

[28] S. M. M. Rahman, M. O. Ahmad, M. N. S. Swamy, “Statistics of 2-D DT-CWT coefficients for a Gaussian distributed signal,” IEEE Trans. Circuits Syst. I Regul. Pap. 55, 2013–2025 (2008).

[29] T. Howlader, Y. P. Chaubey , “Noise reduction of cDNA microarray images using complex wavelets,” IEEE Trans. Image Process. 19, 1953–1967 (2010).

[30] S. Barber, G. Nason , “Real nonparametric regression using complex wavelets,” J. R. Stat. Soc. Ser. B 66, 927–939 (2004). Crossref,

[31] M. Barkat , Signal Detection and Estimation, Artech House, London (2005).

[32] V. P. S. Naidu, J. R. Raol , “Pixel-level image fusion using wavelets and principal component analysis,” Def. Sci. J. 58, 338–352 (2008).

[33] R. Singh, R. Srivastava, O. Prakash, A. Khare , “Multimodal medical image fusion in dual tree complex wavelet transform domain using maximum and average fusion rules,” J. Med. Imag. Health Inf. 2, 168–173 (2012).

[34] O. Rockinger , “Image sequence fusion using a shift-invariant wavelet transform,” Proc. Int. Conf. Image Process. 3, 288–291 (1997). Crossref,

[35] B. K. Shreyamsha Kumar , “Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform,” Signal Image Video Process. 7, 1125–1143 (2013).

[36] Q. Xiao-bo, Y. Jing-wen, Y. Gui-de , “Sum-modified-Laplacian-based Multifocus Image Fusion Method in Sharp Frequency Localized Contourlet Transform Domain,” Opt. Precis. Eng. 17, 1203–1202 (2009)

[37] Z. Zhou, S. Li, B. Wang , “Multi-scale weighted gradient-based fusion for multi-focus images,” Inf. Fusion 20, 60–72 (2014).

[38] B. K. Shreyamsha Kumar , “Image fusion based on pixel significance using cross bilateral filter,” Signal Image Video Process. 9, 1193–1204 (2015).

[39] K. Zhan, J. Teng, Q. Li, J. Shi , “A novel explicit multi-focus image fusion method,” J. Inf. Hiding Multimed. Sign. Process. 6, 600–612 (2015).

[40] P. Mohammadi, A. Ebrahimi-Moghadam, S. Shirani , “Subjective and objective quality assessment of image: A survey,” Majlesi J. Electr. Eng. 9, 55–83 (2014).

[41] B. V. Dasarathy , Multi-Sensor Image Fusion and Its Applications, CRC Press 2007.

[42] J. L. Crowley, J. Martin , Experimental comparison of correlation techniques, Proc. Int. Conf. Intelligent Autonomous Systems, Karlsruhe (1995).

[43] Z. Wang, E. P. Simoncelli, A. C. Bovik , “Multi-scale structural similarity for image quality assessment,” IEEE Asilomar Conf. Signals, Syst. Comput. 2, 9–13 (2003).

[44] H. R. Sheikh, A. C. Bovik , “Image information and visual quality,” IEEE Trans. Image Process. 15, 430–444 (2006).

[45] A. Mittal, R. Soundararajan, A. C. Bovik , “Making a ‘completely blind’ image quality analyzer,” IEEE Signal Process Lett. 20, 209–212 (2013).

[46] G. Piella, H. Heijmans , A new quality metric for image fusion, Proc. Int. Conf. Image Processing, pp. 173–176 (2003).

[47] A. Mittal, A. K. Moorthy, A. C. Bovik , “No-reference image quality assessment in the spatial domain,” IEEE Trans. Image Process. 21, 4695–4708 (2012).

Abdallah Bengueddoudj, Zoubeida Messali, Volodymyr Mosorov. A novel image fusion algorithm based on 2D scale-mixing complex wavelet transform and Bayesian MAP estimation for multimodal medical images[J]. Journal of Innovative Optical Health Sciences, 2017, 10(3): 1750001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!