光学学报, 2018, 38 (9): 0906002, 网络出版: 2019-05-09   

基于广义回归神经网络的CO-OFDM系统非线性均衡 下载: 1165次

Nonlinear Equalizer Based on General Regression Neural Network in Coherent Optical OFDM System
作者单位
1 浙江工业大学信息工程学院, 浙江 杭州 310023
2 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
引用该论文

吴金达, 卢瑾, 任宏亮, 覃亚丽, 郭淑琴, 胡卫生. 基于广义回归神经网络的CO-OFDM系统非线性均衡[J]. 光学学报, 2018, 38(9): 0906002.

Jinda Wu, Jin Lu, Hongliang Ren, Yali Qin, Shuqin Guo, Weisheng Hu. Nonlinear Equalizer Based on General Regression Neural Network in Coherent Optical OFDM System[J]. Acta Optica Sinica, 2018, 38(9): 0906002.

参考文献

[1] Shieh W, Yi X W, Ma Y R, et al. Coherent optical OFDM: has its time come?[J]. Journal of Optical Networking, 2008, 7(3): 234-255.

[2] Armstrong J. OFDM for optical communications[J]. Journal of Lightwave Technology, 2009, 27(3): 189-204.

[3] Shieh W, Athaudage C. Coherent optical orthogonal frequency division multiplexing[J]. Electronics Letters, 2006, 42(10): 587-589.

[4] 杨奇, 余少华. 兆兆比特每秒(Tb/s)级相干光OFDM超长距离传输[J]. 科学通报, 2014, 59(16): 1497-1507.

    Yang Q, Yu S H. Tb/s ultra long haul transmission of coherent optical OFDM[J]. Chinese Science Bulletin, 2014, 59(16): 1497-1507.

[5] 陈锦妮, 柯熙政. 基于副载波外差检测的副载波-正交频分复用系统误码性能研究[J]. 光学学报, 2016, 36(2): 0206001.

    Chen J N, Ke X Z. Biterror rate investigation on subcarrier modulation-orthogonal frequency division multiplexing system based on subcarrier heterodyne detection[J]. Acta Optica Sinica, 2016, 36(2): 0206001.

[6] 刘剑飞, 王少影, 曾祥烨, 等. 基于群智能算法的光OFDM系统PAPR抑制[J]. 光学学报, 2017, 37(1): 0106006.

    Liu J F, Wang S Y, Zeng X Y, et al. PAPR reduction in optical OFDM systems based on swarm intelligence algotithms[J]. Acta Optica Sinica, 2017, 37(1): 0106006.

[7] 张帅, 白成林, 罗清龙, 相干光, 等. OFDM 系统中 MMSE 信道估计研究[J]. 光电子·激光, 2013, 24(3): 508-513.

    Zhang S, Bai C L, Luo Q L, et al. Optimization of channel estimation for coherent optical OFDM systems with MMSE method[J]. Journal of Optoelectronics·Laser, 2013, 24(3): 508-513.

[8] 童峥嵘, 郭尊礼, 曹晔, 等. 小波包变换对CO-OFDM系统高峰均比的抑制性能研究[J]. 光子学报, 2015, 44(12): 1206001.

    Tong Z R, Guo Z L, Cao Y, et al. Wavelet packet transform for PAPR reduction performance in CO-OFDM system[J]. Acta Photonica Sinica, 2015, 44(12): 1206001.

[9] 李宝, 余建军, 何晶, 等. 相干光OFDM系统中基于导频辅助的采样时钟频率偏差估计和补偿算法[J]. 光子学报, 2015, 44(1): 0106003.

    Li B, Yu J J, He J, et al. Estimation and compensation of sampling clock frequency offset in coherent optical OFDM systems with a pilot-aided method[J]. Acta Photonica Sinica, 2015, 44(1): 0106003.

[10] 邓明亮, 易兴文, 于振明, 等. 通过恒包络调制提高相干光OFDM系统的光纤非线性容限[J]. 光电子·激光, 2013, 24(10): 1922-1929.

    Deng M L, Yi X W, Yu Z M, et al. Improving the fiber nonlinear tolerance based on constant envelope modulation for CO-OFDM systems[J]. Journal of Optoelectronics·Laser, 2013, 24(10): 1922-1929.

[11] Zhang J, Qiu K, Li Y G, et al. Channel estimation based on linear interpolation algorithm in DDO-OFDM system[J]. Proceedings of SPIE, 2010, 7988(9): 605-606.

[12] ForozeshK, Jansen SL, RandelS, et al. The influence of the dispersion map in coherent optical OFDM transmission systems[C]∥2008 IEEE/LEOS Summer Topical Meetings, July 21-23, 2008, Acapulco, Mexico. New York:IEEE, 135- 136.

[13] Barbieri A, Colavolpe G, Foggi T, et al. OFDM versussingle-carrier transmission for 100 Gbps optical communication[J]. Journal of Lightwave Technology, 2010, 28(17): 2537-2551.

[14] Ahmad S T, Kumar K P. Radialbasis function neural network nonlinear equalizer for 16-QAM coherent optical OFDM[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2507-2510.

[15] 郝耀鸿, 李玉权, 王荣, 等. 一种基于限幅的降低相干光OFDM系统非线性效应的方法[J]. 电路与系统学报, 2012, 17(5): 115-119.

    Hao Y H, Li Y Q, Wang R, et al. A method for fiber nonlinearity mitigation by signal clipping in coherent optical OFDM system[J]. Journal of Circuits and Systems, 2012, 17(5): 115-119.

[16] 郝耀鸿, 李玉权, 王荣. 一种降低相干光OFDM系统非线性效应的方法[J]. 光电子技术, 2011, 31(1): 46-49.

    Hao Y H, Li Y Q, Wang R. A method for fiber nonlinearity mitigation for coherent optical OFDM system[J]. Optoelectronic Technology, 2011, 31(1): 46-49.

[17] Lu CH, Feng K M. Reduction of high PAPR effect with FEC enhanced deep data clipping ratio in an optical OFDM system[C]∥2007 Conference on Lasers and Electro-OpticsSociety, October 21-25, 2007, Lake Buena Vista, FL, USA. New York:IEEE, 941- 942.

[18] BulakciÖ, SchusterM, Bunge CA, et al. Precoding based peak-to-average power ratio reduction for optical OFDM demonstrated on compatible single-sideband modulation with direct detection[C]∥2008 National Fiber Optic Engineers Conference, February 24-28, 2008, San Diego, CA, USA. New York:IEEE, 1- 3.

[19] Krongold BS, TangY, Shieh W. Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via active constellation extension[C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York:IEEE, 1- 2.

[20] 刘剑飞, 余美龙, 曾祥烨, 等. 一种降低CO-OFDM系统PAPR改进的星座图扩展算法[J]. 光电工程, 2014, 41(10): 63-67.

    Liu J F, Yu M L, Zeng X Y, et al. Improved active constellation extension algorithm for PAPR reduction of CO-OFDM system[J]. Opto-Electronic Engineering, 2014, 41(10): 63-67.

[21] Ip E M, Kahn J M. Fiber impairment compensation using coherent detection and digital signal processing[J]. Journal of Lightwave Technology, 2010, 28(4): 502-519.

[22] Gao G J, Zhang J, Gu W Y. Analytical evaluation of practical DBP-based intra-channel nonlinearity compensators[J]. IEEE Photonics Technology Letters, 2013, 25(8): 717-720.

[23] Rafique D, Zhao J, Ellis A D. Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission[J]. Optics Express, 2011, 19(6): 5219.

[24] Jarajreh M A, Giacoumidis E, Aldaya I, et al. Artificial neural network nonlinear equalizer for coherent optical OFDM[J]. IEEE Photonics Technology Letters, 2015, 27(4): 387-390.

[25] Jarajreh MA, RajbhandariS, GiacoumidisE, et al. Fibre impairment compensation using artificial neural network equalizer for high-capacity coherent optical OFDM signals[C]∥2014 9th International Symposium on Communication Systems, Networks & Digital Signal Processing, July 23-25, 2014, Manchester, UK. New York:IEEE, 1112- 1117.

[26] Eriksson T A, Bulow H, Leven A. Applyingneural networks in optical communication systems: possible pitfalls[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2091-2094.

[27] Cartledge J C, Guiomar F P, Kschischang F R, et al. Digital signal processing for fiber nonlinearities[J]. Optics Express, 2017, 25(3): 1916-1936.

[28] Nguyen T, Mhatli S, Giacoumidis E, et al. Fiber nonlinearity equalizer based on support vector classification for coherent optical OFDM[J]. IEEE Photonics Journal, 2016, 8(2): 7802009.

[29] Zibar D, Piels M, Jones R, et al. Machine learning techniques in optical communication[J]. Journal of Lightwave Technology, 2016, 34(6): 1442-1452.

[30] Giacoumidis E, Mhatli S. Stephens M F C, et al. Reduction of nonlinear intersubcarrier intermixing in coherent optical OFDM by a fast newton-based support vector machine nonlinear equalizer[J]. Journal of Lightwave Technology, 2017, 35(12): 2391-2397.

[31] Specht D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576.

[32] 王萍, 陈健, 由骁迪, 等. 光相干QAM信号的弹性DAML相位估计[J]. 光学学报, 2016, 36(8): 0806007.

    Wang P, Chen J, You X D, et al. Flexible decision-aided maximum likelihood phase estimation for optical coherent QAM signals[J]. Acta Optica Sinica, 2016, 36(8): 0806007.

[33] Su IJ, Tsai CC, Sung W T. Comparison of BP and GRNN algorithm for factory monitoring[J]. Applied Mechanics and Materials, 2011, 52/53/54: 2105- 2110.

[34] 丁硕, 常晓恒, 巫庆辉. GRNN与BPNN的函数逼近性能对比研究[J]. 现代电子技术, 2014, 37(7): 114-117.

    Ding S, Chang X H, Wu Q H. Comparative study on function approximation performances of GRNN and BPNN[J]. Modern Electronics Technique, 2014, 37(7): 114-117.

[35] 张小钒, 兰生. 基于GRNN神经网络的变压器励磁涌流识别方法[J]. 电测与仪表, 2016, 53(23): 84-89.

    Zhang X F, Lan S. A method to identify excitation inrush current of transformer based on GRNN neural network[J]. Electrical Measurement & Instrumentation, 2016, 53(23): 84-89.

[36] YuR, Ke ZW, Li XL, et al. PNN and GRNN approach for fault diagnosis of steam turbine[J]. Applied Mechanics and Materials, 2012, 271/272: 1592- 1596.

[37] Rooki R. Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel-Bulkley drilling fluids in oil drilling[J]. Measurement, 2016, 85: 184-191.

[38] 董月军, 唐英杰, 任宏亮, 等. 基于无迹卡尔曼滤波的CO-OFDM系统相位噪声补偿算法[J]. 中国激光, 2017, 44(11): 1106010.

    Dong Y J, Tang Y J, Ren H L, et al. Phase noise compensation algorithm of CO-OFDM system based on unscented Kalman filter[J]. Chinese Journal of Lasers, 2017, 44(11): 1106010.

[39] 任宏亮, 康少源, 卢瑾, 等. 大线宽相干光正交频分复用系统中盲相位噪声补偿[J]. 光学学报, 2017, 37(1): 0106005.

    Ren H L, Kang S Y, Lu J, et al. Blind phase noise compensation in large linewidth coherent optical orthogonal frequency division multiplexing systems[J]. Acta Optica Sinica, 2017, 37(1): 0106005.

[40] 唐英杰, 董月军, 任宏亮, 等. 基于时频域卡尔曼滤波的CO-OFDM系统相位噪声补偿算法[J]. 光学学报, 2017, 37(9): 0906002.

    Tang Y J, Dong Y J, Ren H L, et al. Phase noise compensation algorithm based on Kalman filtering in time and frequency domains for CO-OFDM system[J]. Acta Optica Sinica, 2017, 37(9): 0906002.

吴金达, 卢瑾, 任宏亮, 覃亚丽, 郭淑琴, 胡卫生. 基于广义回归神经网络的CO-OFDM系统非线性均衡[J]. 光学学报, 2018, 38(9): 0906002. Jinda Wu, Jin Lu, Hongliang Ren, Yali Qin, Shuqin Guo, Weisheng Hu. Nonlinear Equalizer Based on General Regression Neural Network in Coherent Optical OFDM System[J]. Acta Optica Sinica, 2018, 38(9): 0906002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!