光学学报, 2014, 34 (12): 1223003, 网络出版: 2014-11-04   

介电润湿液体光学棱镜

Electrowetting-Based Liquid Prism
作者单位
南京邮电大学光电工程学院 微流控光学技术研究中心, 江苏 南京 210023
摘要
为实现光束控制系统的无机械化、快速化和微小化,研制基于介电润湿效应的液体光学棱镜。分析界面形状随电压的变化,推导接触角与两侧工作电压的关系,测量系统对光束的偏转角,讨论接触角饱和及液体折射率对系统控光能力的影响。采用COMSOL软件仿真研究液体粘性对棱镜性能的影响。结果表明,在不同电压组合下,双液体界面从初始弯曲界面变为与水平方向呈不同倾斜角的平界面,从而实现对入射光束方向的控制和偏转。受电润湿饱和现象的影响,该液体棱镜的偏转范围为-10°~+10°。若选用的液体组合可降低甚至消除接触角饱和,且具有大的折射率比,则系统的控光能力将得到大幅提高。当动力粘度取0.03 Pa·s时,系统的响应速度和稳定性能最佳。
Abstract
A liquid micro-optical prism based on electrowetting is developed for wide angle beam tracking and steering. The shape of the two liquid interfaces is analyzed, the relationship between contact angle and two voltages is derived, and the deflection of the beam from the system is detected. In the meantime, COMSOL software is employed to analyze the effect of dynamic viscosity on the prism′s response time and stability. The results indicate that the contact angle between the conductive fluid and wall changes, then interface of the immiscible liquids is rendered into plane accordingly when different voltages are applied on the wall. It succeeds in controlling beam tracking and steering as traditional optical prism. Due to electrowetting saturation, the maximum deflection of the liquid prism approaches to 20° (-10°~+10°); If the electrowetting saturation is decreased or even eliminated while ratio of the refractive indexes of two liquids is increased, the ability of deflection of the system will be enhanced largely. To achieve stable performance and stability of the prism, the optimal dynamic viscosity should be 0.03 Pa·s.
参考文献

[1] Jelalian V Albert. Laser Radar Systems [M]. London: Artech House, 1992. 31-40.

[2] Hou Linlin. Advanced 3D Microfabrication and Demonstration of Arrayed Electrowetting Microprisms [D]. Cincinnati: University of Cincinnati, 2011. 15-50.

[3] McManamon F Paul, Dorschner A Tarry, Corkumet L David, et al.. Optical phased arraytechnology [C]. IEEE, 1996, 84(2): 268-298.

[4] 瞿荣辉, 叶青, 董作人, 等. 基于电光材料的光学相控阵技术研究进展[J]. 中国激光, 2008, 35(12): 1861-1867.

    Qu Ronghui, Ye Qing, Dong Zuoren, et al.. Progess of optical phased array technology based on electro-optic material [J]. Chinese J Lasers, 2008, 35(12): 1861-1867.

[5] McManamon F Paul, Bos J Philip, Escutiet J Michael, et al.. A review of phased array steering for narrow-band electrooptical systems [J]. IEEE, 2009, 97(6): 1078-1096.

[6] 师宇斌, 马浩统, 马阎星, 等. 基于液晶相控阵高精度高效率光束偏转数值仿真[J]. 中国激光, 2014, 41(2): 0202002.

    Shi Yubin, Ma Haotong, Ma Yanxing, et al.. Numerical simulation of high accuracy and high efficiency beam steering based on liquid crystal optical phase array [J]. Chinese J Lasers, 2014, 41(2): 0202002.

[7] Paul F McManamon. Agile nonmechanical beam steering [J]. Opt Photonics News, 2007, 17(3): 24-29.

[8] Lin Yeong Jyh, Chen Kuan Ming, Wu Shin Tson. Broadband and polarization independent beam steering using dielectrophoresis-tilted prism [J]. Opt Express, 2009, 17(10): 8651-8656.

[9] Smith R Neil, Abeysinghe C Don, Haus W Joseph, et al.. Agile wide-angle beam steering with electrowetting microprisms [J]. Opt Express, 2006, 14(14): 6557-6563.

[10] Zhao Rui, Cumby Brad, Russell Ann, et al.. Large area and low power dielectrowetting optical shutter with local deterministic fluid film breakup [J]. Appl Phys Lett, 2013, 103(22): 223510.

[11] Hagedon Matthew, Yang Shu, Russel Ann, et al.. Brighte-paper by transport of ink through a white electrofluidic imaging film [J]. Nat Communication, 2012, 3(10): 1173.

[12] 王大振, 彭润玲, 陈家壁, 等. 双液体变焦透镜变焦迟滞现象的研究[J]. 光学学报, 2011, 31(6): 0612001.

    Wang Dazhen, Peng Runling, Chen Jiabi, et al.. Variable-focus hysteresis of double-liquid variable-foucus lens [J]. Acta Optica Sinica, 2011, 31(6): 0612001.

[13] Wei Han, Haus W Joseph, McManamon F Paul, et al.. Beam steering performance of electrowetting microprism arrays [C]. SPIE, 2009, 7339: 73390J.

[14] Cheng Jiangtao, Chen Chunglung. Adaptive beam tracking and steering via electrowetting-controlled liquid prism [J]. Appl Phys Lett, 2011, 99(19): 191108.

[15] T Satyanarayana, G S Ajay KumarReddy, V S P Rajesh. Design and simulation of micro electro wetting liquid lens for miniature cameras [J]. International Journal of Science and Research, 2013, 2(2): 180-185.

[16] Frieder Mugele. Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics [J]. Soft Matter, 2009, 5: 3377-3384.

[17] Chevalliot Stéphanie, Kuiper Stein, Heikenfeld Jason. Experimental validation of the invariance of electrowetting contact angle saturation [J]. Journal of Adhesion Science and Technology, 2012, 26(12-17): 1909-1930.

[18] Marguerite Bienia, Catherine Quilliet, Marcel Vallade. Modification of drop shape controlled by electrowetting [J]. Langmuir, 2003, 19(22): 9328-9333.

[19] Roura Pere. Thermodynamic derivations of the mechanical equilibrium conditions for fluid surfaces: Young′s and Laplace′s equations [J]. Am J Phys, 2005, 73(12): 1139-1147.

赵瑞, 田志强, 刘启超, 王评, 梁忠诚. 介电润湿液体光学棱镜[J]. 光学学报, 2014, 34(12): 1223003. Zhao Rui, Tian Zhiqiang, Liu Qichao, Wang Ping, Liang Zhongcheng. Electrowetting-Based Liquid Prism[J]. Acta Optica Sinica, 2014, 34(12): 1223003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!