光子学报, 2015, 44 (2): 0227002, 网络出版: 2015-02-15   

扩散过程中弱相干光场的退相干

Decoherence of Weak Coherent State in the Diffusion Process
作者单位
武夷学院 机电工程学院, 福建 武夷山 354300
摘要
研究了扩散过程中弱相干光场量子特性的演化.利用正规乘积、反正规乘积和Weyl编序算符内的积分技术, 采用热纠缠态表象求解密度矩阵主方程, 利用Kraus算符给出扩散过程中密度算符解的表达式, 导出初态为弱相干态的量子态密度算符演化规律.讨论了扩散对光场压缩效应和反聚束效应的影响.结果表明:随着扩散过程的进行, 弱相干场压缩深度和压缩范围均在减小;扩散初期光场呈反聚束效应, 扩散时间大于一定值后反聚束效应消失.
Abstract
The quantum properties of weak cohetent state in terms of squeezing effect and antibunching effect were investigated in the diffusion. Master equation of density operator in the diffusion process can be concisely solved by virtue of thermo-entangled state representation and the technique of integration within an ordered product of operators, which contains normal ordering, antinormal ordering and Weyl ordering. The solution of master equation of density operator in diffusion process was given by Kraus operator. The evolution formula of the field density operator which is in weak coherent state initially was get . Its squeezing effect and antibunching are investigated by the numerical method. The effect of decoherence on its nonclassical property is discussed. Numerical results show that compression depth is weakened and the compression range decreases with diffusion time increasing. On the other hand, the light field displays antibunching effect in the early diffusion. When the diffusion time is greater than a certain value, its antibunching effect disappears.
参考文献

[1] RALPH T C, GILCHRIST A, MIBURN G J. Quantum computation with optical coherent states[J].Physical Review A, 2003, 68(4): 042319.

[2] PELLIZZARI T, CARDINER S A, CIRAC J I, et al. Decoherence, continuous observation, and quantum computing: a cavity Qed model[J].Physical Review Letters, 1995, 75(21): 3788-3791.

[3] EKERT A K. Quantum cryptography based on Bell′s theorem[J].Physical Review Letters, 1991, 67(6): 661-663.

[4] GU Yu-wan, SHI Guo-dong, SUN Yu-qiang, et al. Nonclassical properties of multiple-photon-added two mode squeezed coherent state[J].International Journal of Theoretical Physics, 2014, 53(5): 1784-1796.

[5] ZHOU Jun, FAN Hong-yi, SONG Jun. Photon-subtracted two-mode squeezed thermal state and its photon-number distribution[J].International Journal of Theoretical Physics, 2012, 51(5): 1591-1599.

[6] 卢道明.三参量双模压缩粒子数态的量子特性[J].物理学报, 2012, 61(21): 210302.

    LU Dao-ming. The quantum properties of three parameter two-mode squeezed number state[J].Acta Physica Sinica, 2012, 61(21): 210302.

[7] 兰海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数[J].物理学报, 2009, 58(12): 8281-8288.

    LAN Hai-jiang, PANG Hua-feng, WEI Lian-fu. Wigner functions of multiple-photon excited coherent states[J].Acta Physica Sinica, 2009, 58(12): 8281-8288.

[8] WANG Zhong-jie, LI Cong, ZHANG Xiao-dong. Entanglement properties of photon-added two-mode entangled coherent states and their preparations via cavity quantum electrodynamics[J].Acta Photonica Sinica, 2012, 41(11): 1342-1346.

[9] LU Dao-ming. The entropic squeezing of superposition of two arbitrary coherent states[J].Chinese Physics B. 2008, 17(2): 618-623.

[10] 袁洪春, 徐学翔. 单双模连续真空态及其量子统计性质[J].物理学报, 2012, 61(6): 064205.

    YUAN Hong-chun, XU Xue-xiang. One-and two-mode successively squeezed state and its statiical properties[J].Acta Physica Sinica, 2012, 61(6): 064205.

[11] MA Shan-jun, LUO Wen-wei. Comparison of nonclassicality between photon-added and photon-subtracted squeezed vacuum states[J].Chinese Physics B, 2012, 21(2): 024203.

[12] 吴道永. 双光子过程耦合腔系统中光场的量子特性[J].光子学报, 2012, 41(9): 1104-1107.

    WU Dao-yong. The quantum properties of the field in the system of atoms interacting with coupled cavities via a two-photon hopping interaction[J].Acta Photonica Sinica, 2012, 41(9): 1104-1107.

[13] WANG Chang-chun, FAN Hong-yi. Evolution of a thermo state in a single-mode amplitude dissipative channel[J].Chinese Physics Letter. 2010, 27(11): 110302.

[14] 张浩亮, 贾芳, 徐学翔, 等.光子增减叠加相干态在热环境中的退相干[J].物理学报, 2013, 62(1): 014208.

    ZHANG Hao-liang, JIA Fang, XU Xue-xiang, et al. DEcoherence of a photon-subtraction-addition coherent state in a thermal environment[J].Acta Physica Sinica, 2012, 62(1): 014208.

[15] CARVALHAO A R R, MINTERT F, BUCHLEITNER A. Decoherence and multipartite entanglement[J].Physical Review Letters, 2004, 93(23): 230501.

[16] WICKERT R, BERNARDES N K, van LOOCK P. Entanglement properties of optical coherent states under amplitude damping[J].Physical Review A, 2010, 81(6): 062344.

[17] AGARWAL G S, BISWAS A. Nonclassicality and decoherence of photon-subtracted squeezed state[J].Physical Review A, 2007, 75(3): 032104.

[18] XU Xue-xiang, HU Li-yun, FAN Hong-yi. Photon-added squeezed thermal states: statistical properties and its decoherence in a photon-loss channel[J].Optics Communications, 2010, 283(9): 1801-1809.

[19] FAN Hong-yi, HU Li-yun. New approach for solving master equations in quantum optics and quantum statistics by virtue of thermo-entangled state representation[J].Communication in Theory Physics, 2009, 51(4): 729-742.

邱昌东, 卢道明. 扩散过程中弱相干光场的退相干[J]. 光子学报, 2015, 44(2): 0227002. QIU Chang-dong, LU Dao-ming. Decoherence of Weak Coherent State in the Diffusion Process[J]. ACTA PHOTONICA SINICA, 2015, 44(2): 0227002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!