中国激光, 2018, 45 (12): 1202012, 网络出版: 2019-05-09   

激光熔覆制备马氏体/铁素体双相不锈钢层的力学与腐蚀性能研究 下载: 910次

Mechanical and Corrosion Properties of Martensite/Ferrite Duplex Stainless Steel Prepared via Laser Cladding
作者单位
南华大学机械工程学院, 湖南 衡阳 421001
引用该论文

朱红梅, 李勇作, 张振远, 何彬, 邱长军. 激光熔覆制备马氏体/铁素体双相不锈钢层的力学与腐蚀性能研究[J]. 中国激光, 2018, 45(12): 1202012.

Hongmei Zhu, Yongzuo Li, Zhenyuan Zhang, Bin He, Changjun Qiu. Mechanical and Corrosion Properties of Martensite/Ferrite Duplex Stainless Steel Prepared via Laser Cladding[J]. Chinese Journal of Lasers, 2018, 45(12): 1202012.

参考文献

[1] 朱红梅, 谭超林, 匡同春, 等. 低温水冷下AZ80镁合金表面激光熔覆Al63Cu27Zn10涂层的组织与性能[J]. 中国激光, 2015, 42(10): 1003005.

    Zhu H M, Tan C L, Kuang T C, et al. Microstructure and properties of Al63Cu27Zn10 coating prepared by laser cladding on AZ80 magnesium alloy under low-temperature water cooling condition[J]. Chinese Journal of Lasers, 2015, 42(10): 1003005.

[2] 邓志强, 石世宏, 周斌, 等. 不等高弯曲弧形薄壁结构激光熔覆成形[J]. 中国激光, 2017, 44(9): 0902005.

    Deng Z Q, Shi S H, Zhou B, et al. Laser cladding forming of unequal-height curved arc-shaped thin-wall structures[J]. Chinese Journal of Lasers, 2017, 44(9): 0902005.

[3] Wang K M, Chang B H, Chen J S, et al. Effect of molybdenum on the microstructures and properties of stainless steel coatings by laser cladding[J]. Applied Sciences, 2017, 7(10): 1065.

[4] Hengsbach F, Koppa P, Duschik K, et al. Duplex stainless steel fabricated by selective laser melting- microstructural and mechanical properties[J]. Materials & Design, 2017, 133: 136-142.

[5] Davidson K, Singamneni S. Selective laser melting of duplex stainless steel powders: an investigation[J]. Materials and Manufacturing Processes, 2016, 31(12): 1543-1555.

[6] Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility[J]. Materials Science and Engineering: A, 2016, 665: 59-65.

[7] Hemmati I, Ocelík V. De Hosson J T M. Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings[J]. Journal of Materials Science, 2011, 46(10): 3405-3414.

[8] Hemmati I, Ocelík V. De Hosson J T M. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings[J]. Surface and Coatings Technology, 2011, 205(21/22): 5235-5239.

[9] Liu Y, Li A, Cheng X, et al. Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel[J]. Materials Science and Engineering: A, 2016, 666: 27-33.

[10] Li K B, Li D, Liu D Y, et al. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel[J]. Applied Surface Science, 2015, 340: 143-150.

[11] Lienert T J, Lippold J C. Improved weldability diagram for pulsed laser welded austenitic stainless steels[J]. Science and Technology of Welding and Joining, 2003, 8(1): 1-9.

[12] Kumar V, Dixit U S. A model for the estimation of hardness of laser bent strips[J]. Optics & Laser Technology, 2018, 107: 491-499.

[13] Chandra K, Kain V, Bhutani V, et al. Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties[J]. Materials Science and Engineering: A, 2012, 534: 163-175.

[14] Gupta A, Bhargava A K, Tewari R, et al. TEM studies of boron-modified 17Cr-7Ni precipitation- hardenable stainless steel via rapid solidification route[J]. Metallurgical and Materials Transactions A, 2013, 44(9): 4248-4256.

[15] Yao C W, Huang J, Zhang P L, et al. Toughening of Fe-based laser-clad alloy coating[J]. Applied Surface Science, 2011, 257(6): 2184-2192.

[16] Sun S D, Liu Q C, Brandt M, et al. Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel[J]. Materials Science and Engineering A, 2014, 606: 46-57.

[17] Mun D J, Shin E J, Cho K C, et al. Cooling rate dependence of boron distribution in low carbon steel[J]. Metallurgical and Materials Transaction A, 2012, 43(5): 1639-1648.

[18] Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel[J]. International Journal of Fatigue, 2017, 94: 218-235.

[19] Wang Z Q, Palmer T A, Beese A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia, 2016, 110: 226-235.

[20] 梁泽芬, 季根顺, 樊丁, 等. 激光改善不锈钢表面耐蚀性和抗氧化性能的研究进展[J]. 材料导报, 2009, 23(1): 67-71.

    Liang Z F, Ji G S, Fan D, et al. Research progress in improving corrosion and oxidation resistance of stainless steel by laser technology[J]. Materials Review, 2009, 23(1): 67-71.

朱红梅, 李勇作, 张振远, 何彬, 邱长军. 激光熔覆制备马氏体/铁素体双相不锈钢层的力学与腐蚀性能研究[J]. 中国激光, 2018, 45(12): 1202012. Hongmei Zhu, Yongzuo Li, Zhenyuan Zhang, Bin He, Changjun Qiu. Mechanical and Corrosion Properties of Martensite/Ferrite Duplex Stainless Steel Prepared via Laser Cladding[J]. Chinese Journal of Lasers, 2018, 45(12): 1202012.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!