中国激光, 2006, 33 (7): 865, 网络出版: 2006-08-08   

超强固体激光及其在前沿学科中的应用

Ultraintense Solid-State Lasers and Applications to the Frontiers of Sciences
作者单位
中国工程物理研究院,四川 绵阳 621900
摘要
Abstract
参考文献

[1] . Tajima, G. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics[J]. Phy. Rev., ST-accelerators and Beams, 2002, 5(3): 031301-1.

[2] . Umstadter. Review of physics and applications of relativistic plasmas driven by ultra-intense lasers[J]. Phys. Plasmas, 2001, 8(5): 1774-1785.

[3] . Ditmire, S. Bless, G. Dyer et al.. Overview of future directions in high energy-density and high-field science using ultra-intense lasers[J]. Rad. Phys. and Chem., 2004, 70: 535-552.

[4] . Tajima, J. M. Dawson. Laser electron acceleration[J]. Phys. Rev. Lett., 1979, 43(4): 267-270.

[5] . E. Clayton, C. Joshi, C. Darrow et al.. Relativistic plasma-wave excitation by collinear optical mixing[J]. Phys. Rev. Lett., 1985, 53(21): 2343-2346.

[6] . Kitagawa, T. Matsumoto, T. Minamihata et al.. Beat wave excitation of plasma wave and observation of accelerated elesctrons[J]. Phys. Rev. Lett., 1992, 68(1): 48-51.

[7] . E. Clayton, K. A. Marsh, A. Dyson et al.. Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves[J]. Phys. Rev. Lett., 1993, 70(1): 37-40.

[8] . Sprangle, E. Esarey, J. Krall et al.. Propagation and guiding of intense laser pulses in plasmas[J]. Phys. Rev. Lett., 1992, 69(15): 2200-2203.

[9] . M. Antonsen,Jr, P. Mora. Self-focusing and Raman scattering of laser pulses in tenuous plasmas[J]. Phys. Rev. Lett., 1992, 69(15): 2204-2207.

[10] . P. D. Mangles, C. D. Murphy, Z. Najmudin et al.. Monoenergetic beams of relativistic electrons from intense laser-plasma interaction[J]. Nature, 2004, 431(7008): 535-538.

[11] . G. R. Geddes, Cs. Toth, J. van Tilborg et al.. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541.

[12] . Faure, Y. Glinec, A. Pukhov et al.. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544.

[13] . Hosokai, K. Kenoshita, A. Zhidkov et al.. Refraction effects of the cavity formation and interaction of an intense ultra-short pulse with a gas jet[J]. Phys. Plasmas, 2004, 11(10): L57-L60.

[14] . Kando, S. Masuda, A. Zhidkov et al.. Electron acceleration by a nonlinear wakefield generated by ultrashort (23-fs) high-peak-power laser pulses in plasma[J]. Phys. Rev.E, 2005, 71(1): 015403-1.

[15] . C. Wilks, A. B. Langdon, T. E. Cowan et al.. Energetic protons generation in ultra-intense laser-solid interactions[J]. Phys. Plasmas, 2001, 8(2): 542-549.

[16] . A. Anavely, M. H. Key, S. P. Hatchett et al.. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Phys. Rev. Lett., 2000, 85(14): 2945-2948.

[17] . P. Hatchett, C. G. Brown, T. C. Cowan et al.. Electron,photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets[J]. Phys. Plasmas, 2000, 7(5): 2076-2082.

[18] . L. Clark, K. Krushelnick, J. R. Davies et al.. Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids[J]. Phys. Rev. Lett., 2000, 84(4): 670-673.

[19] . N. Beg, M. S. Wei, A. E. Dangor et al.. Target charging effects on proton acceleration during high-intensity short-pulse laser-solid interactions[J]. Appl. Phys. Lett., 2004, 84(15): 2766-2768.

[20] . N. Beg, M. S. Wei, E. L. Clark et al.. Return current and proton emission from short pulse laser interactions with wire targets[J]. Phys. Plasmas, 2004, 11(5): 2806-2813.

[21] . Murakami, Y. Kitagawa, Y. Sentoku et al.. Observation of protons rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target[J]. Phys. Plasmas, 2001, 8(9): 4138-4143.

[22] . Pukhov. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser[J]. Phys. Rev. Lett., 2001, 86(16): 3562-3565.

[23] . Fuchs, Y. Sentoku, S. Karsch et al.. Comparison of laser ion acceleration from front and rear surfaces of thin foils[J]. Phys. Rev. Lett., 2005, 94(4): 045004-1.

[24] . Allen, P. K. Patel, A. Mackinnon et al.. Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils[J]. Phys. Rev. Lett., 2004, 93(26): 265004-1.

[25] . d′Humieres, E. Lefebvre, L. Gremillet et al.. Proton acceleration mechanisms in high-intensity laser interaction with thin foils[J]. Phys. Plasmas, 2005, 12(6): 062704-1.

[26] . T. Li, Z. M. Sheng, Y. Y. Ma et al.. Demonstration of bulk acceleration of ions in ultraintense laser interactions with low-density foams[J]. Phys. Rev. E, 2005, 72(6): 066404-1.

[27] . J. Mackinnon, Y. Sentoku, P. K. Patel et al.. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses[J]. Phys. Rev. Lett., 2002, 88(21): 215006-1.

[28] . Maksimchuk, S. Gu, K. Flippo et al.. Forward ion acceleration in thin films driven by a high-intensity laser[J]. Phys. Rev. Lett., 2000, 84(18): 4108-4111.

[29] . Fritzler, V. Malka, G. Grillon et al.. Proton beams generated with high-intensity lasers: applications to medical isotope production[J]. Appl. Phys. Lett., 2003, 83(15): 3039-3041.

[30] . F. Wang, K. Nemoto, T. Nayuki et al.. Effect of plasma peak density on energetic proton emission in ultrashort high-intensity laser-foil interactions[J]. Phys. Plasmas, 2005, 12(11): 113101-1.

[31] . Oishi, T. Nayuki, T. Fujii et al.. Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target[J]. Phys. Plasmas, 2005, 12: 073102-1.

[32] . M. Hegelich, B. J. Albright, J. Cobble et al.. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444.

[33] . Schwoerer, S. Pfotenhauer, O. Jackel et al.. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448.

[34] . Kaluza, J. Schreiber, M. I. K. Santala et al.. Influence of the laser prepulse on proton acceleration in thin-foil experimants[J]. Phys. Rev. Lett., 2004, 93(4): 045003-1.

[35] E. Fourkal, I. Velchev, C. M. Ma. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers [J]. Phys. Rev. E, 2005, 71(3-2B):036412-1~036412-11

[36] . Esirkepov, M. Borghesi, S. V. Bulanov et al.. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Phys. Rev. Lett., 2004, 92(17): 175003-1.

[37] . W. D. Ledingham, P. McKenna, R. P. Singhal. Applications for nuclear phenomena generated by ultra-intense lasers[J]. Scince, 2003, 300(5622): 1107-1111.

[38] . Ditmire, J. Zweibeck, V. D. Yanovsky et al.. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters[J]. Nature, 1999, 398(6727): 489-491.

[39] . Zweibeck, R. A. Smith, T. E. Cowan et al.. Nuclear fusion driven by Coulomb explosion of large deuterium clusters[J]. Phys. Rev. Lett., 2000, 84(12): 2634-2637.

[40] . Zweibeck, T. E. Cowan, J. H. Hartley et al.. Detailed study on nuclear fusion from femtosecond laser-drive explosions of deuterium clusters[J]. Phys. Plasmas, 2002, 9(7): 3108-3120.

[41] . Kishimoto, T. Masaki, T. Tajima. High energy ions and nuclear fusion in laser-clustre interaction[J]. Phys. Plasmas, 2002, 9(2): 589-601.

[42] . Grillon, Ph. Balcou, J. P. Chambaret et al.. Deuterium-deuterium fusion dynamics in low-density molecular-cluster jets irradiated by intense ultrafast laser pulses[J]. Phys. Rev. Lett., 2002, 89(6): 065005-1.

[43] . W. Madison, P. K. Patel, M. Allen et al.. Investigation of fusion yield from exploding deuterium-cluster plasmas produced by 100-TW laser pulses[J]. J. Opt. Soc. Am. B, 2003, 20(1): 113-117.

[44] . Hohenberger, D. R. Symes, K. W. Madison et al.. Dynamic acceleration effects in explosions of laser-irradiated heteronuclear clusters[J]. Phys. Rev. Lett., 2005, 95(19): 195003-1.

[45] . Last, J. Jortner. Ultrafast high-energy dynamics of thin spherical shell of light ions in the Coulomb explosion of heteroclusters[J]. Phys. Rev. A, 2005, 71(6): 063204-1.

[46] . Y. Kim, I. Alexeev, H. M. Milchberg. Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, plasma waveguides[J]. Phys. Plasmas, 2005, 12(5): 056712-1.

[47] . Last, J. Jortner. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. Ⅳ. Coulomb explosion of molecular heteroclusters[J]. J. Chem. Phys., 2004, 121(17): 8329-8342.

[48] . M. Yang, P. McKenna, K. W. D. Ledingham et al.. Neutron production by fast protons from ultraintense laser-plasma interactions[J]. J. Appl. Phys., 2004, 96(11): 6912-6918.

[49] . M. Yang, K. W. D. Ledingham, P. McKenna et al.. Nuclear reactions in copper induced by protons from a petawatt laser-foil interactions[J]. Appl. Phys. Lett., 2004, 84(5): 675-677.

[50] . W. Schoenlein, W. P. Leemans, A. H. Chin et al.. Femtosecond X-ray pulses at 0.4 generated by 900 Thomson scattering: a tool for producing the structural dynamics of materials[J]. Science, 1996, 274(5285): 236-238.

[51] . V. Hartemann. High-intensity scattering processes of relativistic electrons in vacuum[J]. Phys. Plasmas, 1998, 5(5): 2037-2047.

[52] . He, Y. Y. Lau, D. P. Umstadter et al.. Phase dependence of Thomson scattering in an ultraintense laser field[J]. Phys. Plasmas, 2002, 9(10): 4325-4329.

[53] . He, Y. Y. Lau, D. P. Umstadter et al.. Backscattering of an intense laser beam by an electron[J]. Phys. Rev. Lett., 2003, 90(5): 005002-1.

[54] . Y. Lau, F. He, D. P. Umstadter et al.. Nonlinear Thomson scattering: a tutorial[J]. Phys. Plasmas, 2003, 10(5): 2155-2162.

[55] . A. Krafft. Spectral distribution of Thomson-scattering photons from high-intensity pulsed lasers[J]. Phys. Rev. Lett., 2004, 92(20): 204802-1.

[56] . Gao. Thomson scattering from ultrashort and ultraintense laser pulses[J]. Phys. Rev. Lett., 2004, 93(24): 243001-1.

[57] . A. Krafft, A. Doyuran, J. B. Rosenzweig. Pulsed-laser nonlinear scattering for general scattering geometries[J]. Phys. Rev. E, 2005, 72(5): 056502-1.

[58] . T. Phuoc, F. Burgy, J.-P. Rousseau et al.. Laser based synchrotron radiation[J]. Phys. Plasmas, 2005, 12(2): 023101-1.

[59] T. Cowan, T. Ditmire, G. L. Sage. Intense laser-electron interaction [R]. LLNL, UCRL-MI-135159

[60] . M. Naumova, J. A. Nees, I. V. Sokolov et al.. Relativistic generation of isolated attosecond pulses in a λ3 focal volume[J]. Phys. Rev. Lett., 2004, 92(6): 063902-1.

[61] . M. Naumova, J. A. Nees, A. Mourou. Relativistic attosecond physics[J]. Phys. Plasmas, 2005, 12(5): 056707-1.

[62] . Naumova, I. Sokolov, J. Nees et al.. Attosecond electron bunches[J]. Phys. Rev. Lett., 2004, 93(19): 195003-1.

[63] . V. Isanin, S. S. Bulanov, F. F. Kamenets et al.. Attosecond electromagnetic pulse generation due to the interaction of a relativistic soliton with a breaking-wave plasma wave[J]. Phys. Rev. E, 2005, 71(3): 036401-1.

[64] . S. Bulanov, T. Zh. Esirkepov, F. F. Kamenets et al.. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a wakefield with regular nonlinear structures[J]. Phys. Rev. E, 2006, 73(3): 036408-1.

[65] . Lee, Y. H. Cha, M. S. Shin et al.. Relativistic nonlinear Thomson scattering as attosecond x-ray source[J]. Phys. Rev. E, 2003, 67(2): 026502-1.

[66] . Lee, B. H. Kim, D. Kim. Coherent radiation of relativistic nonlinear Thomson scattering[J]. Phys. Plasmas, 2005, 12(4): 043107-1.

[67] . F. Lan, P. X. Lu, W. Cao et al.. Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering[J]. Phys. Rev. E, 2005, 72(6): 066501-1.

[68] . E. Kaplan, P. L. Shkolnikov. Lasetron: a proposed source of powerful nuclear-time-scale electromagnetic bursts[J]. Phys. Rev. Lett., 2002, 88(7): 074801-1.

[69] . Tabak, J. Hammer, M. E. Glinsky et al.. Ignition and high gain with ultrapowerful lasers[J]. Phys. Plasmas, 1994, 1(5): 1626-1634.

[70] . Kodama, P. A. Norreys, K. Mima et al.. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 2001, 412(6849): 798-802.

[71] . Kodama, H. Shiraga, K. Shigemori et al.. Fast heating scalable to laser fusion ignition[J]. Nature, 2002, 418(6901): 933-934.

[72] . Atzeni. Inertial fusion fast ignitor: igniting pulse parameter window vs the penetrating depth of the heating particles and the density of the precompressed fuel[J]. Phys. Plasmas, 1999, 6(8): 3316-3326.

[73] . Roth, T. E. Cowan, M. H. Key et al.. Fast ignition by intense laser-accelerated proton beams[J]. Phys. Rev. Lett., 2001, 86(3): 436-439.

[74] . H. Key. Fast track to fusion energy[J]. Nature, 2001, 412(6849): 775-776.

[75] A. Macchi, A. Antonicci, S. Atzeni et al.. Fundamental issues in fast ignition physics:from relativistic electron generation to proton driven ignition [C]. 19th IAEA Fusion Energy Conference,Oct. 2002:IAEA-CN-94/IF-5

[76] J. H. Nockolls, L. L. Wood. Future of inertial fusion energy [R]. LLNL, UCRL-JC-149860

[77] . Takab, D. S. Clark, S. P. Hatchett et al.. Review of progress in fast ignition[J]. Phys. Plasmas, 2005, 12(5): 057305-1.

[78] . Heller. JanUSP opens new world of physics research[J]. Sci. & Technol. Rev., 2000, 5: 25-27.

[79] . W. Lee, S. J. Moon, H. K. Chung et al.. Finite temperature dense matter studies on next-generation light sources[J]. J. Opt. Soc. Am. B, 2003, 20(4): 770-778.

[80] . Widmann, G. Guethlein, M. E. Foord et al..Interferometric investigation of femtosecond laser-heated expanded states[J]. Phys. Plasmas, 2001, 8(9): 3869-3872.

[81] . Audebert, R. Shepherd, K. B. Fournier et al.. Heating of thin foils with a relativistic-intensity short-pulse laser[J]. Phys. Rev. Lett., 2002, 89(26): 265001-1.

[82] . K. Patel, A. J. Makinnon, M. H. Key et al.. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Phys. Rev. Lett., 2003, 91(12): 125004-1.

[83] . E. Foord, D. B. Reisman, P. T. Springer. Determining the equation-of-state isentrope in an isochoric heated plasma[J]. Rev. Sci. Instrum., 2004, 75(8): 2586-2589.

[84] . Zhidkov, J. Koga, A. Sasaki et al.. Radiation damping effects on the interaction of ultraintense laser pulses with an overdanse plasma[J]. Phys. Rev. Lett., 2002, 88(18): 185002-1.

[85] . S. Bulanov, A. M. Fedotov, F. Pegorara. Damping of electromagnetic waves due to electron-positron pair production[J]. Phys. Rev. E, 2005, 71(1): 016404-1.

[86] . V. Bulanov, T. Zh. Esirkepov, J. Kaga et al.. Interaction of electromagnetic waves with plasma in the radiation-dominated regime[J]. Plasma Phys. Rep., 2004, 30(3): 196-213.

[87] . Bula, K. T. McDonald, E. J. Prebye. Observation of nonlinear effects in Compton scattering[J]. Phys. Rev. Lett., 1996, 76(17): 3116-3119.

[88] . F. Shen, M. Y. Yu. High-intensity laser-field amplification between two foils[J]. Phys. Rev. Lett., 2002, 89(27): 275004-1.

[89] . Landecker. Possibility of frenquency multiplication and wave amplification by means of some relativistic effects[J]. Phys. Rev., 1952, 86(6): 852-855.

[90] . R. Arutyunian, V. A. Tumanian. The Compton effect on relativistic electrons and the possibility of obtaining high energy beams[J]. Phys. Lett., 1963, 4(3): 176-178.

[91] . L. Li, Z. R. Huang, M. D. Borland et al.. Small-angle Thomson scattering of ultrafast laser pulses for bright,sub-100-fs x-ray radiation[J]. Phys. Rev. ST Accel. Beams, 2002, 5(4): 044701-1.

[92] . B. Mori. Generation of tunable radiation using an underdense ionization front[J]. Phys. Rev. A, 1991, 44(8): 5118-5121.

[93] . L. Savage,Jr. , C. Joshi, Mori. Frequency upconversion of electromagnetic radiation transmission into an ionization front[J]. Phys. Rev. Lett., 1992, 68(7): 946-949.

[94] . C. Wilks, J. M. Dawson, W. B. Mori et al.. Photon accelerator[J]. Phys. Rev. Lett., 1989, 62(22): 2600-2603.

[95] . W. Siders, S. P. Le Blanc, D. Fisher et al.. Laser wakefield excitation and measurement by femtosecond longitudinal interferometry[J]. Phys. Rev. Lett., 1996, 76(19): 3570-3573.

[96] . M. Sheng, Y. Sentoku, K. Mima et al.. Generation of one-cycle laser pulses by use of high-amplitude plasma waves[J]. Phys. Rev. E, 2000, 62(5): 7258-7265.

[97] . Faure, Y. Glinec, J. J. Santos et al.. Observation of laser-pulse shortening in nonlinear plasma waves[J]. Phys. Rev. Lett., 2005, 95(20): 205003-1.

[98] . V. Bulanov, T. Esirkepov,and T. Tajima, Light intensification towards the Schwinger limit[J]. Phys. Rev. Lett., 2003, 91(8): 085001-1.

彭翰生. 超强固体激光及其在前沿学科中的应用[J]. 中国激光, 2006, 33(7): 865. 彭翰生. Ultraintense Solid-State Lasers and Applications to the Frontiers of Sciences[J]. Chinese Journal of Lasers, 2006, 33(7): 865.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!