光学 精密工程, 2018, 26 (5): 1124, 网络出版: 2018-08-14   

黏滑驱动式小型精密运动平台

Small precision motion platform based on stick-slip driving principle
作者单位
南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
摘要
为满足微纳操作系统对精密驱动技术的需求, 本文提出了一种基于黏滑原理的小型精密运动平台。该平台将柔性铰链、惯性质量块以及弹性元件结合为独立的定子基座, 并与压电叠堆、陶瓷球固连为定子, 安装在平台基座底部, 通过螺钉调节弹性元件端部垂直方向的位置, 就可以改变定子与移动台间的预压力, 进而获得最佳的驱动力。为研究黏滑驱动的运动机理, 分析各参数对平台运动的影响, 进行了力学建模; 而摩擦力作为黏滑驱动的关键因素, 为了能准确地表达黏滑驱动的摩擦机理, 在力学建模中引入了LuGre摩擦模型, 并利用Matlab/Simulink软件进行了仿真分析。设计加工的黏滑驱动平台的整体尺寸为40 mm×40 mm×18 mm, 质量为32 g。试验表明: 该平台最小可实现10 nm的运动步长, 速度最高可达2.5 mm/s, 行程为22 mm。
Abstract
To realize precise actuation of micro/nano-manipulation systems, a type of nano-motion platform based on the stick-slip principle was designed. Flexure hinges, a mass block, and an elastic component were integrated as an independent stator base. The stator consisted of a stator base, a piezoelectric stack, and a ceramic ball installed in the base bottom. The vertical position of the end of the elastic component can be adjusted by rotating an adjustment screw to change the pre-pressure between the stator and moving platform. Thus, the optimal driving force can be obtained. Because of the motion mechanisms of stick-slip driving and the influence of various parameters on the platform motion, mechanical modeling was carried out. Friction force was of key significance for stick-slip driving. In order to accurately express the friction mechanism of stick-slip driving, the LuGre friction model was introduced into the mechanical modeling. The simulation analysis was performed using MATLAB/Simulink software. The overall size of the stick-slip driving platform is 40 mm×40 mm×18 mm, and its mass is 32 g. Experiments show that the platform can achieve a minimum step size of 10 nm, its highest speed is 2.5 mm/s, and its stroke is 22 mm.
参考文献

[1] 曾毅波, 蒋书森, 黄彩虹, 等. 激光共焦扫描显微镜在微机电系统中的应用 [J]. 光学 精密工程, 2008, 16(7): 1241-1246.

    ZENG Y B, JIANG SH S, HUANG C H, et al.. Application of laser scanning confocal microscope in micro-electro-mechanical system [J]. Optics and Precision Engineering, 2008, 16(7): 1241-1246. (in Chinese)

[2] 李晓莹, 李慧敏, 常洪龙, 等. 微机电系统光学组件的系统级建模 [J]. 光学 精密工程, 2012, 20(5): 1069-1075.

    LI X Y, LI H M, CHANG H L, et al.. System-level modeling for MEMS optical components [J]. Opt. Precision Eng., 2012, 20(5): 1069-1075. (in Chinese)

[3] 张娟, 吴文荣, 毕列. 微颗粒的三维空间跨尺度装配方法 [J]. 光学 精密工程, 2017, 25(1): 115-122.

    ZHANG J, WU W R, BI L. Trans-scale assembly method of micro-particles in 3D space [J]. Opt. Precision Eng., 2017, 25(1): 115-122. (in Chinese)

[4] NI X X, WANG ZH SH, CHEN H M, et al.. A hybrid-driven active clamp forward converter based on LM5027 [C]. Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, 2011: 1516-1520.

[5] YU L ZH, CHEN J. General control model for bionic inchworm robot moving modes based on discrete hopfield neural network [C]. Proceedings of the 2nd International Conference on Intelligent System Design and Engineering Application (ISDEA), IEEE, 2012: 687-690.

[6] MUJJALINVIMUT E, KONGHIRUN M, LAORATANAKUL P. A design study of ultrasonic motor drive [C]. Proceedings of the 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE, 2009: 274-277.

[7] BERGANDER A, BREGUET J M, SCHMITT C, et al.. Micropositioners for microscopy applications based on the stick-slip effect [C]. Proceedings of 2000 International Symposium on Micromechatronics and Human Science, IEEE, 2000: 213-216.

[8] BREGUET J M, CLAVEL R. Stick and slip actuators: design, control, performances and applications [C]. Proceedings of 1998 International Symposium on Micromechatronics and Human Science, IEEE, 1998: 89-95.

[9] BREGUET J M, DRIESEN W, KAEGI F, et al.. Applications of piezo-actuated micro-robots in micro-biology and material science [C]. Proceedings of 2007 International Conference on Mechatronics and Automation (ICMA), IEEE, 2007: 57-62.

[10] 张世忠, 荣伟彬, 台国安, 等. 基于黏滑运动原理的单自由度纳米定位台设计与动力学分析 [J]. 机械工程学报, 2012, 48(19): 29-34.

    ZHANG SH ZH, RONG W B, TAI G A, et al.. Designing and dynamic modeling of 1D nanopositioner based on stick-slip motion principle [J]. Journal of Mechanical Engineering, 2012, 48(19): 29-34. (in Chinese)

[11] 杨飞雨, 潘鹏, 徐伟, 等. 基于压电陶瓷的摩擦可调粘滑定位平台 [J]. 压电与声光, 2017, 39(6): 825-828, 833.

    YANG F Y, PAN P, XU W, et al.. Friction adjustable stick-slip positioning stage based on piezoelectric ceramics [J]. Piezoelectrics & Acoustooptics, 2017, 39(6): 825-828, 833. (in Chinese)

[12] LI Z W, ZHONG B W, WANG ZH H, et al.. Large thrust trans-scale precision positioning stage based on inertial stick-slip driving [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(2): 204-209.

[13] MADI M S, KHAYATI K, BIGRAS P. Parameter estimation for the LuGre friction model using interval analysis and set inversion [C]. Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2004: 428-433.

[14] BARAHANOV N, ORTEGA R. Necessary and sufficient conditions for passivity of the LuGre friction model [J]. IEEE Transactions on Automatic Control, 2000, 45(4): 830-832.

[15] 潘鹏. 基于粘滑驱动原理的跨尺度纳米级定位平台研究 [D]. 苏州: 苏州大学, 2016.

    PAN P. Study of Nanopositioner with Cross-scale Travel Based on Stick-slip Principle [D]. Suzhou: Soochow University, 2016. (in Chinese)

[16] 钟博文. 基于粘滑驱动的跨尺度精密运动平台及其关键技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.

    ZHONG B W. Research on Key Technologies of Cross-scale Precision Movement Stage Based on Stick-slip Driving [D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)

时运来, 娄成树, 张军, 程丁继. 黏滑驱动式小型精密运动平台[J]. 光学 精密工程, 2018, 26(5): 1124. SHI Yun-lai, LOU Cheng-shu, ZHANG Jun, CHENG Ding-ji. Small precision motion platform based on stick-slip driving principle[J]. Optics and Precision Engineering, 2018, 26(5): 1124.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!