光学学报, 2013, 33 (11): 1116004, 网络出版: 2013-09-06  

锂铝硅磷酸盐玻璃的紫外透射性能与玻璃结构

Ultra-Violet Transmission and Structure of Lithium Aluminum Silicate-Phosphate Glasses
作者单位
南京工业大学材料科学与工程学院, 江苏 南京 210009
摘要
石英玻璃因为其紫外(UV)透射性能较好,常被用来作为紫外探测器的窗口材料。但是它的热膨胀系数较小,如果和其他材料直接封接,就会产生内应力,从而对材料造成损伤。为此,以SiO2、P2O5、Al2O3、Li2O作为组分,制备紫外透射性能好(波长200 nm处,最高达到56%)、热膨胀系数高,同时具有较好稳定性的透紫外玻璃。利用固体核磁共振(MAS-NMR)、红外光谱(FTIR)对玻璃的局部结构进行表征和研究。结果表明,玻璃中的硅原子处于4配位状态;磷原子开始是3配位态,随着Al2O3含量的增加,磷氧四面体中出现了一个非桥氧键P-O…Li,而铝原子的平均配位数不断减少;Si-O-P键、Si-O-Al键以及P-O-Al键的出现,表明三个组分之间相互交联,形成一个整体;Si-O-P键越少,Si-O-Si键越多,紫外透射率越高。
Abstract
Silica glasses are often used as the window material of ultra-violet (UV) detector due to having a high UV transmittance. However, this glass is not allowed to connect with other materials directly for its lower thermal expansion coefficient, otherwise, the innerstress can damage the materials. Therefore, using SiO2, P2O5, Al2O3, Li2O as the components, the optical glasses with the high UV transmittance (the maximum up to 56% at 200 nm wavelength), high thermal expansion coefficient and good stability is prepared. The local structure of glasses is studied by magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si atoms in the glasses are located in the 4-coordinated states and phosphate groups are similar with ultraphosphate groups Q3 originally. And with the Al2O3 content increased, there is a non-bridge oxygen (P-O…Li). At the same time, the average of Al coordination number gradually reduces. The formation of Si-O-P, Si-O-Al and P-O-Al bridge oxygens indicates that the cross-linking among the three components is caused to form a three-dimensional network structure. Moreover, the UV transmittance can be improved when increasing Si-O-Si bonds and decreasing Si-O-P bonds.
参考文献

[1] P Y Shih, H M Shiu. Properties and structural investigations of UV-transmitting vitreous strontium zinc metaphosphate [J]. Mater Chem Phys, 2007, 106(2-3): 222-226.

[2] S Baccaro, R Dall′Igna, P Fabeni, et al.. Ce3+ or Tb3+-doped phosphate and silicate scintillating glasses [J]. J Lumin, 2000, 87-89: 673-675.

[3] G Chen, S Baccaro, A Cecilia, et al.. Ultraviolet and visible transmission spectra of heavy germanate glasses containing Sn2+ and Ce3+[J]. J Non-Cryst Solids, 2003, 326-327: 343-347.

[4] D Ehrt. UV-absorption and radiation effects in different glasses doped with iron and tin in the ppm range [J]. C R Chim, 2002, 5(11): 679-692.

[5] B Karmakar, P Kundu, R N Dwivedi. Effect of vacuum dehydroxylation on the UV transparency and structure of metaphosphate glasses [J]. Mater Lett, 2001, 47(6): 371-375.

[6] M Ashraf Chaudhry, M Altaf. Optical absorption studies of sodium cadmium phosphate glasses [J]. Mater Lett, 1998, 34(3-6): 213-216.

[7] R Kirilova, V Kozhukharov. Synthesis and properties of phosphate dosimeter glasses [J]. Mater Sci Eng B, 1995, 34(2-3): 216-219.

[8] B Karmakar, P Kundu, R N Dwivedi. UV transparency and structure of fluorophosphate glasses [J]. Mater Lett, 2002, 57(4): 953-958.

[9] K J D Mackenzie, M E Smith. Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials [M]. Amsterdam: Pergamon Press, 2002. 201-260.

[10] R J Kirkpatrick, R K Brow. Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review [J]. Solid State Nucl Magn Reson, 1995, 5(1): 9-21.

[11] P V Hatton, I M Brook. Characterisation of the ultrastructure of glass-ionomer (poly-alkenoate) cement [J]. Br Dent J, 1992, 173(8): 275-277.

[12] N J Clayden, A Aronne, S Esposito, et al.. Solid state NMR study of phosphosilicate gels [J]. J Non-Cryst Solids, 2004, 345-346: 601-604.

[13] J M Oliveira, R N Correia, M H Fernandes, et al.. Influence of the CaO/MgO ratio on the structure of phase-separated glasses: a solid state 29Si and 31P MAS NMR study [J]. J Non-Cryst Solids, 2000, 265(3): 221-229.

[14] A Belkébir, J Rocha, A P Esculcas, et al.. Structural characterisation of glassy phases in the system Na2O-Al2O3-P2O5 by MAS and solution NMR, EXAFS and vibrational spectroscopy [J]. Spectrochim Acta Part A, 1999, 55(7-8): 1323-1336.

[15] R Hussin, D Holland, R Dupree. A MAS NMR structural study of cadmium phosphate glasses [J]. J Non-Cryst Solids, 2002, 298(1): 32-42.

[16] M Sitarz. The effect of inversion of matrix and inclusions composition in liquation phospho-silicate glasses [J]. Spectrochim Acta Part A, 2011, 79(4): 739-742.

[17] T M Alam, R K Brow. Local structure and connectivity in lithium phosphate glasses: a solid-state 31P MAS NMR and 2D exchange investigation [J]. Journal of Non-Crystalline Solids, 1998, 223(1-2): 1-20.

[18] V N Rai, B N R Sekhar, P Tiwari, et al.. Spectroscopic studies of gamma irradiated Nd doped phosphate glasses [J]. J Non-Cryst Solids, 2011, 357(22-23): 3757-3764.

[19] M Szumera, I Wacawska. Spectroscopic and thermal studies of silicate-phosphate glass [J]. J Therm Anal Calorim, 2007, 88(1): 151-156.

[20] M Sitarz, M Handke, Z Fojud, et al.. Spectroscopic studies of glassy phospho-silicate materials [J]. J Mol Struct, 2005, 744-747: 621-626.

[21] F Moreau, A Durán, F Muoz. Structure and properties of high Li2O-containing aluminophosphate glasses [J]. J Eur Ceram Soc, 2009, 29(10): 1895-1902.

[22] Wang Meng, Yi Lixia, Chen Youkuo, et al.. Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2 μm application [J]. Mater Chem Phys, 2009, 114(1): 295-299.

崔乔乔, 丁明烨, 倪亚茹, 陆春华. 锂铝硅磷酸盐玻璃的紫外透射性能与玻璃结构[J]. 光学学报, 2013, 33(11): 1116004. Cui Qiaoqiao, Ding Mingye, Ni Yaru, Lu Chunhua. Ultra-Violet Transmission and Structure of Lithium Aluminum Silicate-Phosphate Glasses[J]. Acta Optica Sinica, 2013, 33(11): 1116004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!