激光与光电子学进展, 2015, 52 (11): 110003, 网络出版: 2015-11-09   

石墨烯红外光电探测器研究进展 下载: 2732次

Research Progress in Graphene-Based Infrared Photodetectors
作者单位
1 中国矿业大学(北京)化学与环境工程学院, 北京 100083
2 中国科学院理化技术研究所微纳材料与技术研究中心功能纳米材料实验室, 北京 100190
摘要
红外光电探测器是将入射的不可见的红外辐射信号转变成电信号输出的器件。红外光电探测器在多个行业均有广泛用途。近年来,石墨烯由于具有从紫外至远红外的宽光谱吸收特性、室温下超高的载流子迁移率、良好的机械柔韧性和环境稳定性等优异性能,使其在超宽谱、超快、非制冷、大面阵、柔性和长寿命光电探测器方面极具潜力,引起了国内外对石墨烯光电探测器的广泛研究。重点阐述了近年来国内外在石墨烯红外光电探测器方面的最新研究进展,主要包括近红外(0.76~1 μm)、短波红外(1~3 μm)、中波红外(3~5 μm)、长波红外(8~12 μm)和超宽谱石墨烯光电探测器。
Abstract
Infrared photodetector is a device that can transform invisible infrared radiation into electrical signal. It is widely used in many industries. Recent years, graphene has aroused extensive attention among scientists and engineers in optoelectronic fields due to its unique properties such as wide spectral absorption from ultraviolet to far-infrared, ultrahigh carrier mobility at room temperature, good mechanical flexibility and environmental stability. These characteristics make it promising in fabricating ultra-wide spectrum, ultrafast, uncooled, large area array, flexible and long-life photodetectors. The latest research progress in graphene-based infrared photodetectors are reviewed. It mainly includes near-infrared (0.76~1 μm), short-wave infrared (1~3 μm), medium-wave infrared (3~ 5 μm), long-wave infrared (8~12 μm) and ultra-wide spectrum graphene photodetectors.
参考文献

[1] Yang S Q, Wang B J, Yi X, et al.. Infrared decoys recognition method based on dual- band information fusion[J]. Infrared Phys Techn, 2014, 67: 542-546.

[2] Qin Y. A research about the design and application of double spectrum car nightvision system[J]. J Remote Sens Techn, 2014, 2(3): 61-65.

[3] Rogalski A, Chrzanowski K. Infrared devices and techniques[J]. Opto-Electron Rev, 2002, 10(2): 111-136.

[4] Destefanis G, Baylet J, Ballet P, et al.. Status of HgCdTe bicolor and dual- band infrared focal arrays at LETI[J]. J Electron Mater, 2007, 36(8): 1031-1044.

[5] Rutkowski J, Madejczyk P, Piotrowski A, et al.. Two- colour HgCdTe infrared detectors operating above 200 K[J]. Opto-Electron Rev, 2008, 16(3): 321-327.

[6] Martyniuk P, Rogalski A. Quantum- dot infrared photodetectors: status and outlook[J]. Prog Quant Electron, 2008, 32 (3): 89-120.

[7] Nedelcu A, Guériaux V, Dua L, et al.. A high performance quantum-well infrared photodetector detecting below 4.1 mm [J]. Semicond Sci Tech, 2009, 24(4): 045006.

[8] Manurkar P, Ramezani- Darvish S, Nguyen B M, et al.. High performance long wavelength infrared mega- pixel focal plane array based on type-II superlattices[J]. Appl Phys Lett, 2010, 97(19): 193505.

[9] Rodriguez J B, Cervera C, Christol P. A type- II superlattice period with a modified InAs to GaSb thickness ratio for midwavelength infrared photodiode performance improvement[J]. Appl Phys Lett, 2010, 97(25): 251113.

[10] Zhang Y B, Tan Y W, Stormer H L, et al.. Experimental observation of the quantum hall effect and Berry′ s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

[11] Hasan T, Sun Z P, Wang F Q, et al.. Nanotube-polymer composites for ultrafast photonics[J]. Adv Mater, 2009, 21(38): 3874-3899.

[12] Sun Z P, Popa D, Hasan T, et al.. A stable, wideband tunable, near transform- limited, graphene- mode- locked, ultrafast laser[J]. Nano Res, 2010, 3(9): 653-660.

[13] Sun Z P, Hasan T, Torrisi F, et al.. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

[14] Popa D, Sun Z P, Hasan T, et al.. Graphene q-switched, tunable fiber laser[J]. Appl Phys Lett, 2011, 98(7): 073106.

[15] Sun Z P, Hasan T, Ferrari A C. Ultrafast lasers mode- locked by nanotubes and graphene[J]. Physica E, 2012, 44(6): 1082-1091.

[16] Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5896): 666-669.

[17] Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.

[18] 姜娟, 黄婷, 钟敏霖, 等. 激光与石墨烯相互作用的研究现状及发展趋势[J]. 中国激光, 2013, 40(2): 0201002.

    Jiang Juan, Huang Ting, Zhong Minling, et al.. Research status and development trends of interaction between laser and graphene[J]. Chinese J Lasers, 2013, 40(2): 0201002.

[19] Wallace P R. The band theory of graphite[J]. Phys Rev, 1947,71(9): 622-634.

[20] Castro Neto A H, Guinea F, Peres N M R, et al.. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81(1): 109-162.

[21] Riedl C, Coletti C, Starke U J. Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation[J]. J Phys D: Appl Phys, 2010, 43(37): 374009.

[22] Novoselov K S, Geim A K, Morozov S V, et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197-200.

[23] Bolotin K I, Sikes K J, Jiang Z, et al.. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9-10): 351-355.

[24] Du X, Skachko I, Barker A, et al.. Approaching ballistic transport in suspended graphene[J]. Nat Nanotechnol, 2008, 3 (8): 491-495.

[25] Avouris P. Graphene: electronic and photonic properties and devices[J]. Nano Lett, 2010, 10(11): 4285-4294.

[26] Bonaccorso F, Sun Z P, Hasan T, et al.. Graphene photonics and optoelectronics[J]. Nat Photonics, 2010, 4(9): 611-622.

[27] 王劼予, 王丽, 包传辰. 全固态石墨烯锁模激光器的脉冲特性分析[J]. 中国激光, 2013, 40(7): 0702012.

    Wang Jieyu, Wang Li, Bao Chuanchen. Pulse characteristics analysis of all-solid-state mode-locked laser with graphene [J]. Chinese J Lasers, 2013, 40(7): 0702012.

[28] Meric I, Han M Y, Young A F, et al.. Current saturation in zero-bandgap, top-gated graphene field-effect transistors[J]. Nat Nanotechnol, 2008, 3(11): 654-659.

[29] Lee C G, Wei X D, Kysar J W, et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388.

[30] Li J, Zhang R J, Jiang H Q, et al.. Scalable nano- patterning of graphenes using laser shock[J]. Nanotechnol, 2011, 22 (47): 475303.

[31] Zhu Y W, Murali S, Cai W W, et al.. Graphene and graphene oxide: synthesis, properties, and applications[J]. Adv Mater, 2010, 22(35): 3906-3924.

[32] Hass J, de Heer W A, Conrad E H. The growth and morphology of epitaxial multilayer graphene[J]. J Phys Condens Mat, 2008, 20 (32): 323202.

[33] Berger C, Song Z M, Li X B, et al.. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196.

[34] Emtsev K V, Bostwick A , Horn K, et al.. Towards wafer- size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat Mat, 2009, 8(3): 203-207.

[35] Li X S, Cai W W, An J, et al.. Large- area synthesis of high- quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

[36] Huang Wenyu, Feng Dejun, Jiang Shouzhen, et al.. Erbium-doped fiber laser based on single-layer graphene saturable absorber[J]. Chinese J Lasers, 2013, 40(2): 0202001. 黄文育, 冯德军, 姜守振, 等. 基于单层石墨烯可饱和吸收的掺铒光纤激光器[J]. 中国激光, 2013, 40(2): 0202001.

[37] Obraztsov A N. Chemical vapour deposition: making graphene on a large scale[J]. Nat Nanotechnol, 2009, 4(4): 212-213.

[38] Suk J W, Kitt A,Magnuson C W, et al.. Transfer of CVD- grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.

[39] Chunhua Zuo, Jia Hou, Baitao Zhang, et al.. Highly efficient reduced graphene oxide mode- locked Nd∶GGG laser[J]. Chin Opt Lett, 2015, 13(2): 021401.

[40] 廖国珍, 张军, 蔡祥, 等. 基于石墨烯的全光纤温度传感器的研究[J]. 光学学报,2013, 33(7): 0706004.

    Liao Guozhen, Zhang Jun, Cai Xiang, et al.. All- fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.

[41] 徐佳, 吴思达, 刘江, 等. 基于氧化石墨烯的类噪声脉冲拉曼光纤激光器[J]. 中国激光, 2014, 41(3): 0302006

    Xu Jia, Wu Sida, Liu Jiang, et al.. Noise- like pulsed Raman fiber lasers using graphene oxide saturable absorber[J]. Chinese J Lasers, 2014, 41(3): 0302006.

[42] Xia F, Mueller T, Lin Y M, et al.. Ultrafast graphene photodetector[J]. Nat Nanotechnol, 2009, 4(12): 839-843.

[43] Furchi M, Urich A, Pospischil A, et al.. Microcavity-integrated graphene photodetector[J]. Nano Lett, 2012, 12(6): 2773- 2777.

[44] Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Appl Phys Lett, 2014,105(3): 031905.

[45] Konstantatos G, Badioli M, Gaudreau L, et al.. Hybrid graphene- quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7(6): 363-368.

[46] Miao J H, Hu W D, Guo N, et al.. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8): 936-942.

[47] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nat Photonics, 2010, 4(5): 297-301.

[48] Gan X, Shiue R J, Gao Y, et al.. Chip- integrated ultrafast graphene photodetector with high responsivity[J]. Nat Photonics, 2013, 7(11): 883-887.

[49] Wang X M, Cheng Z Z, Xu K, et al.. High- responsivity graphene/silicon- heterostructure waveguide photodetectors[J]. Nat Photonics, 2013, 7(11): 888-891.

[50] Gowda P, Sakorikar T, Reddy S K, et al.. Defect-induced enhancement and quenching control of photocurrent in fewlayer graphene photodetectors[J]. ACS Appl Mater Inter, 2014, 6(10): 7485-7490.

[51] Yao Y, Shankar R, Rauter P, et al.. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection[J]. Nano Lett, 2014, 14(7): 3749-3754.

[52] Yan J, Kim M H, Elle J A, et al.. Dual- gated bilayer graphene hot- electron bolometer[J]. Nat Nanotechnol, 2012, 7(7): 472-478.

[53] Badioli M, Woessner A, Tielrooij K J, et al.. Phonon-mediated mid-Infrared photoresponse of graphene[J]. Nano Lett, 2014, 14(11): 6374-6381.

[54] Fang Z, Liu Z, Wang Y, et al.. Graphene-antenna sandwich photodetector[J]. Nano Lett, 2012, 12(7): 3808-3813.

[55] 李绍娟, 甘胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型碳材料, 2014, 29(5): 329-356.

    Li Shaojuan, Gan Sheng, Mu Haoran, et al.. Research progress in graphene use in photonic and optoelectronic devices [J]. New Carbon Materials, 2014, 29(5): 329-356.

[56] Zhang W J, Lin C T, Liu K K, et al.. Opening an electrical band gap of bilayer graphene with molecular doping[J]. ACS Nano, 2011, 5(9): 7517-7524.

[57] Samuels A J, Carey J D. Molecular doping and band- gap opening of bilayer graphene[J]. ACS Nano, 2013, 7(3): 2790- 2799.

[58] Cai J M, Ruffieux P, Jaafar R, et al.. Atomically precise bottom- up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305): 470-473.

[59] Kumar A, Ahluwalia P K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M=Mo, W; X=S, Se, Te) from ab-initio theory: new direct band gap semiconductors[J]. Eur Phys J B, 2012, 85(6): 186-193.

[60] Qiao H, Yuan J, Xu Z Q, et al.. Broadband photodetectors based on graphene/Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894.

[61] Liu C H, Chang Y C, Norris T B, et al.. Graphene photodetectors with ultra- broadband and high responsivity at room temperature[J]. Nat Nanotechnol, 2014, 9(4): 273-278.

[62] Zhang Y Z, Liu T, Meng B, et al.. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nat Commun, 2013, 4: 1811-1821.

[63] Cao Y, Zhu J Y, Xu J, et al.. Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions[J]. Small, 2014, 10(12): 2345-2351.

[64] Trung T Q, Ramasundaram S, Lee N E. Infrared detection using transparent and flexible field- effect transistor array with solution processable nanocomposite channel of reduced graphene oxide and P(VDF- TrFE)[J]. Adv Funct Mater, 2015, 25(11): 1745-1754.

[65] Li Q, Cheng Z G, Li Z J, et al.. Fabrication of suspended graphene devices and their electronic properties[J]. Chinese Phys B, 2010, 19(9): 097307.

[66] Dorgan V E, Behnam A, Conley H J, et al.. High-field electrical and thermal transport in suspended graphene[J]. Nano Lett, 2013, 13(10): 4581-4586.

杨花, 曹阳, 贺军辉, 杨巧文. 石墨烯红外光电探测器研究进展[J]. 激光与光电子学进展, 2015, 52(11): 110003. Yang Hua, Cao Yang, He Junhui, Yang Qiaowen. Research Progress in Graphene-Based Infrared Photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!