光电工程, 2019, 46 (1): 180392, 网络出版: 2019-01-18  

高精度成像角膜曲率计光学系统设计

Design of optical system for high accuracy imaging keratometry
作者单位
长春理工大学光电工程学院, 吉林 长春 130022
摘要
为减小成像角膜曲率计沿光轴方向的对准误差, 提高角膜屈光度测量精度, 设计一种高精度成像角膜曲率计光学系统。光学系统包括成像系统和低相干干涉测量系统。成像系统由成像物镜、角膜和测量靶环构成, 其中成像物镜采用双远心光路设计; 低相干干涉测量系统采用光栅尺实现扫描反射镜的位移测量, 再通过低相干干涉信号对角膜顶点和测量靶环进行定位, 实现了对角膜顶点和测量靶环距离间的精确测量。成像物镜在最大空间频率为70 lp/mm处的调制传递函数大于0.4, 畸变小于0.05%。设计结果表明, 该系统结构紧凑, 成像质量好, 操作简单, 满足成像角膜曲率计对角膜屈光度的高精度测量需求。
Abstract
In order to reduce the alignment deviation of the imaging keratometer along the optical axis and improve the measurement accuracy of corneal diopter, a high precision imaging keratometer optical system was designed. The optical system includes imaging system and low coherence interferometry system. The imaging system consists of imaging objective, cornea, and measurement target ring, wherein the imaging objective lens adopts a double telocentric optical path design. The low-coherence interferometry system uses the grating scale to measure the displacement of the scanning mirror, and then locates the vertices of the cornea and the measuring target ring by low-coherence interference signals, achieving accurate measurement between the apex of the cornea and the distance of the measuring target ring. The imaging objective has a modulation transfer function greater than 0.4 at a maximum spatial frequency of 70 lp/mm, the distortion is less than 0.05%. The simulation results show that the system has a compact structure, good imaging quality and simple operation. It meets the demand for high precision measurement of corneal refractive power by an imaging keratometer.
参考文献

[1] Rogers D L, Whitehead G R, Stephens J A, et al. Corneal power measurements in fixating versus anesthetized nonfixating children using a handheld keratometer[J]. Journal of American Association for Pediatric Ophthalmology and Strabismus, 2010, 14(1): 11–14.

[2] 赵俊奇, 段培华, 郭智勇, 等. 人眼角膜曲率参数亚像素测量系统的设计[J]. 中北大学学报(自然科学版), 2011, 32(3): 362–366.

    Zhao J Q, Duan P H, Guo Z Y, et al. Design of subpixel algorithm of dioptric paramater measurement system for eye cornea[J]. Journal of North University of China (Natural Science Edition), 2011, 32(3): 362–366.

[3] Karnowski K, Kaluzny B J, Szkulmowski M, et al. Corneal topography with high-speed swept source OCT in clinical examination[J]. Biomedical Optics Express, 2011, 2(9): 2709–2720.

[4] Howland H C, Howland B. Photorefraction: a technique for study of refractive state at a distance[J]. Journal of the Optical Society of America, 1974, 64(2): 240–249.

[5] 李明东, 高兴宇, 陈朋波, 等. 基于机器视觉的高分辨率双远心物镜设计[J]. 光学仪器, 2016, 38(3): 226–232.

    Li M D, Gao X Y, Chen P B, et al. The design of high resolution double telecentric lens based on machine vision[J]. Optical Instruments, 2016, 38(3): 226–232.

[6] 李明东, 高兴宇, 叶鹏, 等. 机器视觉非球面双远心物镜的设计[J]. 激光与光电子学进展, 2016, 53(7): 70801.

    Li M D, Gao X Y, Ye P, et al. Design of aspherical double telecentric lens for machine vision[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70801.

[7] 夏兵, 王敏, 郭巧双, 等. 用于小零件图像测量的双远心光学系统[J]. 光学仪器, 2015, 37(4): 314–318.

    Xia B, Wang M, Guo Q S, et al. Bilateral telecentric system for image measurement of small parts[J]. Optical Instruments, 2015, 37(4): 314–318.

[8] 刘富国, 查学军, 杨波, 等. 基于光纤低相干干涉技术的透镜中心厚度测量方法研究[J]. 应用激光, 2016, 36(5): 605–610.

    Liu F G, Zha X J, Yang B, et al. Study on the method of measuring the center thickness of the lenses based on low coherence interferometry of optical fiber[J]. Applied Laser, 2016, 36(5): 605–610.

[9] 师中华, 杨宝喜, 胡小邦, 等. 基于低相干干涉技术的大量程高精度镜面间距测量[J]. 光学学报, 2016, 36(6): 612001.

    Shi Z H, Yang B X, Hu X B, et al. Lens surface distance measurement with large range and high precision based on low coherence interferometry[J]. Acta Optica Sinica, 2016, 36(6): 612001.

[10] 郑少林, 刘永基, 王肇圻, 等. 新型成像角膜曲率仪的光学系统设计[J]. 光学学报, 2013, 33(5): 522004.

    Zheng S L, Liu Y J, Wang Z Q, et al. Design of optical system for a novel imaging keratometer[J]. Acta Optica Sinica, 2013, 33(5): 522004.

[11] 隋成华, 沃圣杰, 高楠, 等. 基于Placido盘的角膜地形图仪成像系统设计与实现[J]. 光学学报, 2016, 36(12): 1222001.

    Sui C H, Wo S J, Gao N, et al. Design and implementation of imaging system for corneal topography based on Placido disk[J]. Acta Optica Sinica, 2016, 36(12): 1222001.

[12] 赵俊奇, 郭智勇, 陈安世, 等. 一种基于图像处理的人眼全自动角膜曲率计研究[J]. 中国生物医学工程学报, 2011, 30(1): 100–104.

    Zhao J Q, Guo Z Y, Chen A S, et al. Auto-ophthalmometer of eye based on image processing[J]. Chinese Journal of Biomedical Engineering, 2011, 30(1): 100–104.

[13] 闫洁, 孟鹏花, 赵俊奇. 人眼角膜曲率测量系统的研究[J]. 应用基础与工程科学学报, 2011, 19(S1): 254–261.

    Yan J, Meng P H, Zhao J Q. Research of curvature measuring system of eyes cornea[J]. Journal of Basic Science and Engineering, 2011, 19(S1): 254–261.

张雪莹, 王劲松, 黄国林, 许鹏飞. 高精度成像角膜曲率计光学系统设计[J]. 光电工程, 2019, 46(1): 180392. Zhang Xueying, Wang Jinsong, Huang Guolin, Xu Pengfei. Design of optical system for high accuracy imaging keratometry[J]. Opto-Electronic Engineering, 2019, 46(1): 180392.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!