强激光与粒子束, 2014, 26 (6): 063103, 网络出版: 2014-06-03   

345 GHz微折叠波导慢波结构的粗糙度和加工垂直度

Waveguide roughness and exposure steepness for 345 GHz folded waveguide traveling wave tube
张芳 1,2,*董志伟 1,2
作者单位
1 北京应用物理与计算数学研究所, 北京 100094
2 中国工程物理研究院 太赫兹研究中心, 四川 绵阳 621900
摘要
通过理论和数值模拟方法,考虑金属粗糙度的情况下,研究了加工垂直度公差角在0~6°范围内变化时折叠波导慢波结构的工作性能,结果表明:金属波导表面的粗糙度增大时,慢波结构中电磁信号的传输损耗增大;垂直度公差角的增大也使得电磁信号的传输损耗增加,而且垂直度公差角所引起的结构变化会引起器件的电压工作点漂移、带宽降低等。
Abstract
In the MEMS fabrication process of 345 GHz micro-electric vacuum folded waveguide traveling wave tube(FWG-TWT), the surface roughness and the verticality of waveguide’s sidewall are two major challenges. Through theoretical analysis and numerical simulation, the paper considered the roughness and studied the changes of FWG slow wave structure’s performance when the vertical angle tolerance increased from 0° to 6°. When the surface roughness of the waveguide became bigger, the signal’s transmission loss of the slow wave structure increased. When the angle’s tolerance increased, the signal’s transmission loss rose, and angle tolerance which means structure change caused the device’s operating voltage drift, bandwidth reduction, etc. The results in this paper is helpful for the device’s experiment and the processing.
参考文献

[1] Booske J H, Dobbs R J, Joye C D. Vacuum electronic high power terahertz sources[J]. IEEE Trans on Terahertz Science and Technology, 2011,1(1):54-75.

[2] Kory C, Ives L, Read M, et al.W-band MEMS-based TWT development[C]//Fifth IEEE International Vacuum Electronics Conference.2004:88-89.

[3] Nguyen K, Ludeking L, Pasour J. Design of a high-gain wideband high-power 220-GHz multiple-beam serpentine TWT[C]//IEEE International Vacuum Electronics Conference. 2010:20-24.

[4] 徐翱, 胡林林,陈洪斌,等. 太赫兹折叠波导慢波结构的S参数特性[J]. 强激光与粒子束, 2013, 25(4):968-972.(Xu Ao, Hu Linlin, Chen Hongbin, et al. S-parameter characteristics in THz folded waveguide slow wave structures. High Power Laser and Particle Beams, 2013, 25(4):968-972)

[5] 蔡军. W波段折叠波导慢波结构的研究[D]. 济南:山东大学,2006.(Cai Jun. Research on W-band folded waveguide slow wave structure. Ji’nan: Shandong University, 2006)

[6] Gilmour A S. Principles of traveling wave tubes[M]. Boston: Artech House, 1994.

[7] Sharma R K, Sharma A K, Pant B D, et al. Design and development of 100 GHz folded waveguide TWT[C]//IEEE International Vacuum Electronics Conference. 2010.

[8] 陈樟,王亚军.0.14 THz折叠波导行波管慢波结构设计与加工[J].信息与电子工程,2011,9(3):300-302.(Chen Zhang, Wang Yajun. Design and manufacture of 0.14 THz folded waveguide traveling wave tube slow wave structure. Information and Electronic Engineering, 2011, 9(3):300-302)

[9] 张芳, 董志伟,董烨.140 GHz多束折叠波导行波管仿真分析[J].强激光与粒子束,2012,24(4):989-992.(Zhang Fang, Dong Zhiwei, Dong Ye. Simulation of high-gain multiple-beam FWG-TWT. High Power Laser and Particle Beams, 2012, 24(4):989-992)

[10] 张芳,董志伟,董烨,等. 束流发射度对太赫兹微电真空折叠波导行波管性能的影响[J].强激光与粒子束,2013,25(5): 1450-1454.(Zhang Fang, Dong Zhiwei, Dong Ye, et al. Research on the important role of emittance to FWG-TWT performance. High Power Laser and Particle Beams, 2013, 25(5): 1450-1454)

[11] 张芳,董志伟,杨温渊,等.345 GHz微折叠波导慢波结构的参数规律性研究[J].太赫兹科学与电子信息学报,2013,11(1):38-43.(Zhang Fang, Dong Zhiwei, Yang Wenyuan, et al. Parameter study and design of 345 GHz micro-electronic vacuum FWG-TWT slow wave structure. Journal of Terahertz Science and Electronic Information Technology,2013,11(1):38-43)

张芳, 董志伟. 345 GHz微折叠波导慢波结构的粗糙度和加工垂直度[J]. 强激光与粒子束, 2014, 26(6): 063103. Zhang Fang, Dong Zhiwei. Waveguide roughness and exposure steepness for 345 GHz folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2014, 26(6): 063103.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!