中国激光, 2018, 45 (4): 0404003, 网络出版: 2018-04-13   

基于无线光通信的舰船三维变形测量方法 下载: 864次

3D Ship Deformations Measurement Method Based on Free-Space Optical Communication
作者单位
1 海军航空工程学院兵器科学与技术系, 山东 烟台 264001
2 海军航空工程学院电子信息工程系, 山东 烟台 264001
引用该论文

赵芳, 张骁, 赵建军, 杨利斌. 基于无线光通信的舰船三维变形测量方法[J]. 中国激光, 2018, 45(4): 0404003.

Zhao Fang, Zhang Xiao, Zhao Jianjun, Yang Libin. 3D Ship Deformations Measurement Method Based on Free-Space Optical Communication[J]. Chinese Journal of Lasers, 2018, 45(4): 0404003.

参考文献

[1] 栾永年, 姜亚伟. 船体变形测量与分析[J]. 舰船考证参考, 2003( 3): 17- 22.

    Luan YN, Jiang YW. Measurement and analysis of ship deformation[J]. Ship Argumentation, 2003( 3): 17- 22.

[2] Day DL, ArrudaJ. Measuring structural flexure to improve precision tracking[R]. DTIC Document, 1996.

[3] PetovelloM, LachapelleG, Cannon ME. Using GPS and GPS/INS systems to assess relative antenna motion onboard an aircraft carrier for shipboard relative GPS[C]. Proceedings of the National Technical Meeting of the Institute of Navigation, 2005: 219- 229.

[4] Petovello M G. O'Keefe K, Lachapelle G, et al. Measuring aircraft carrier flexure in support of autonomous aircraft landings[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 523-535.

[5] Kageyama K, Kimpara I, Suzuki T, et al. Smart marine structures: an approach to the monitoring of ship structures with fiber-optic sensors[J]. Smart Materials and Structures, 1998, 7(4): 472-478.

[6] PranK, JohnsonG, Jensen AE, et al. Instrumentation of a high-speed surface effect ship for structural response characterization during sea trials[C]. SPIE, 2000, 3986: 372- 379.

[7] Lu Y, Cheng X. Random misalignment and lever arm vector online estimation in ship-borne aircraft transfer alignment[J]. Measurement, 2014, 47: 756-764.

[8] Chattaraj S, Mukherjee A, Chaudhuri S K. Transfer alignment problem:algorithms and design issues[J]. Gyroscopy and Navigation, 2013, 4(3): 130-146.

[9] Astheimer RW, Daley W J. Two axis autocollimator using polarized light: US23602562A[P].1967-05-02.

[10] Liu X M, Zhang Y Y, Feng X Y, et al. A novel method for hull's three dimensional deformation measurement[J]. Applied Mechanics and Materials, 2013, 344: 93-98.

[11] 李岷, 张尧禹, 李岩, 等. 基于测量船角变形光电测量系统的研究[J]. 长春理工大学学报, 2006, 29(3): 14-15.

    Li M, Zhang Y Y, Li Y, et al. Research of angle distortion for measuring ship[J]. Journal of Changchun University of Science and Technology, 2006, 29(3): 14-15.

[12] Shang Y, Yu Q, Yang Z, et al. Displacement and deformation measurement for large structures by camera network[J]. Optics and Lasers in Engineering, 2014, 54: 247-254.

[13] Chen B Q, Garbatov Y, Soares C G. Measurement of weld-induced deformations in three-dimensional structures based on photogrammetry technique[J]. Journal of Ship Production and Design, 2011, 27(2): 51-62.

[14] YuQ, FuS, JiangG, et al. Pose-relay videometric method and ship deformation measurement system with camera-series[C]. International Symposium on Optomechatronic Technologies, 2010: 1- 5.

[15] 战德军, 郑佳兴, 张忠华, 等. 弹性安装船用星惯组合导航系统安装角动态标校方法[J]. 光电工程, 2014, 41(5): 1-6.

    Zhan D J, Zheng J X, Zhang Z H, et al. Dynamic calibration method for shipboard SINS/CSS system[J]. Opto-Electronic Engineering, 2014, 41(5): 1-6.

[16] 高旸. 基于准直共轭光学结构的舰船三维变形测量关键技术研究[D]. 长沙: 国防科技大学, 2015.

    GaoY. Research on key technologies of 3D ship deformations measurement based on collimated conjugated optical structure[D]. Changsha: National University of Defense Technology, 2015.

[17] Yuan J, Long X, Yang K. Temperature-controlled autocollimator with ultrahigh angular measuring precision[J]. Review of Scientific Instruments, 2005, 76(12): 125106.

[18] Gao Y, Wang X, Wu W, et al. Method for estimating the impact of atmospheric turbulence on 3D angular deformations measurement[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(17): 4855-4859.

[19] 李笔锋. 近海岸紫外光通信大气信道特性研究[D]. 烟台: 海军航空工程学院, 2015.

    Li BF. Research on atmospheric channel characteristics of ultraviolet communication in coastal area[D]. Yantai: Naval Aeronautical and Astronautical University, 2015.

[20] 吴晓军, 王红星, 李笔锋, 等. 不同传输环境下大气湍流对无线光通信衰落特征影响分析[J]. 中国激光, 2015, 42(5): 0513001.

    Wu X J, Wang H X, Li B F, et al. Affect analysis of atmospheric turbulence on fading characteristics in free-space optical system over different environments[J]. Chinese Journal of Lasers, 2015, 42(5): 0513001.

[21] 韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

    Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.

[22] 邢建斌, 许国良, 张旭苹, 等. 大气湍流对激光通信系统的影响[J]. 光子学报, 2005, 34(12): 1850-1852.

    Xing J B, Xu G L, Zhang X P, et al. Effect of the atmospheric turbulence on laser communication system[J]. Acta Photonica Sinica, 2005, 34(12): 1850-1852.

[23] 姜广文. 像机链位姿传递摄像测量方法及船体变形测量研究[D]. 长沙: 国防科学技术大学, 2010.

    Jiang GW. Study on pose relay video-metrics method with camera-series and ship deformations measurement[D]. Changsha: National University of Defense Technology, 2010.

[24] 柯熙政, 张宇. 部分相干光在大气湍流中的光强闪烁效应[J]. 光学学报, 2015, 35(1): 0106001.

    Ke X Z, Zhang Y. Scintillation of partially coherent beam in atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(1): 0106001.

[25] Welsh BM. Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution[C]. International Society for Optics and Photonics, 1997: 327- 338.

[26] 丰帆, 李常伟. 基于小波分析的大气湍流相位屏模拟[J]. 光学学报, 2017, 37(1): 0101004.

    Feng F, Li C W. Simulation of atmospheric turbulence phase screen based on wavelet analysis[J]. Acta Optica Sinica, 2017, 37(1): 0101004.

[27] 高宠, 于思源, 马晶, 等. 强湍流区的光束漂移[J]. 强激光与粒子束, 2006, 18(10): 1597-1601.

    Gao C, Yu S Y, Ma J, et al. Beam wander in moderate to strong turbulence[J]. High Power Laser and Particle Beams, 2006, 18(10): 1597-1601.

[28] 寇人可, 王海晏, 吴学铭. 低纬度地区红外波段大气透射率研究[J]. 激光与光电子学进展, 2017, 54(1): 010102.

    Kou R K, Wang H Y, Wu X M. Atmospheric transmittance at infrared band in low latitude areas[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010102.

[29] 宋伟, 邵立, 汪亚夫. 不同垂直高程大气红外吸收透过率的计算[J]. 光电技术应用, 2011, 26(3): 14-17.

    Song W, Shao L, Wang Y F. Calculation of atmospheric infrared absorption transmittance in different vertical heights[J]. Electro-Optic Technology Application, 2011, 26(3): 14-17.

[30] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2013.

    Sheng PX, Mao JT, Li JG, et al.Atmospheric physics[M]. Beijing: Peking University Press, 2013.

赵芳, 张骁, 赵建军, 杨利斌. 基于无线光通信的舰船三维变形测量方法[J]. 中国激光, 2018, 45(4): 0404003. Zhao Fang, Zhang Xiao, Zhao Jianjun, Yang Libin. 3D Ship Deformations Measurement Method Based on Free-Space Optical Communication[J]. Chinese Journal of Lasers, 2018, 45(4): 0404003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!