人工晶体学报, 2020, 49 (4): 738, 网络出版: 2020-06-15  

CuSbS2薄膜制备方法及其太阳能电池的研究进展

Preparation Methods of CuSbS2 Thin Film and Its Research Progress on Solar Cells
作者单位
1 金陵科技学院材料工程学院, 南京 211100
2 合肥学院能源材料与化工学院, 合肥 230022
摘要
三元金属硫化物CuSbS2是一种所含元素地储丰富且环境友好的太阳能电池光吸收层材料,并且具有较高的光吸收系数、合适的带隙以及较低的熔点等特性,有望应用在建筑集成、公共基础建设以及便携电子产品等方面。本文首先综述了近些年各团队在CuSbS2薄膜上的不同制备方法,总结了Cu含量和热处理等对薄膜质量的影响,然后介绍了在太阳能电池方面的最新研究进展,比如电池器件的设计和转换效率的提升等,最后对CuSbS2薄膜太阳能电池的发展趋势作出展望。
Abstract
The ternary metal sulfide CuSbS2 is a kind of earth-abundant and eco-friendly solar cell light absorber layer material, and has characteristics such as high light absorption coefficient, suitable band gap and low melting point. It is expected to be used in building integration, public infrastructure and portable electronics. This paper first summarized the different preparation methods of CuSbS2 thin film by various teams in recent years, and summarized the effects of Cu content and heat treatment on film quality, and then introduced the latest research progress on solar cells, such as the design of cell devices and improvement of conversion efficiency, etc. Finally, the development trend of CuSbS2 thin film solar cells was forecasted.
参考文献

[1] Zhao J, Wang A, Green M A, et al. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells[J].Applied Physics Letters,1998,73(14):1991-1993.

[2] Romeo A, Terheggen M, Abou-Ras D, et al. Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells[J].Progress in Photovoltaics Research & Applications,2004,12(2-3):93-111.

[3] Fouad S S, El Radaf I M, Sharma P, et al. Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties[J].Journal of Alloys and Compounds,2018,757:124-133.

[4] Moon D, Gedi S, Alhammadi S, et al. Surface passivation of a Cu(ln,Ga)Se2 photovoltaic absorber using a thin indium sulfide layer[J].Applied Surface Science,2020,510:145426.

[5] Dufton J T R, Walsh A, Panchmatia P M, et al. Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells[J].Physical Chemistry Chemical Physics,2012,14(20):7229-7233.

[6] Ramasamy K, Sims H, Butler W H, et al. Mono-, few-, and multiple layers of copper antimony sulfide(CuSbS2): a ternary layered sulfide[J].Journal of the American Chemical Society,2014,136(4):1587-1598.

[7] Wu Y, Wadia C, Ma W, et al. Synthesis and photovoltaic application of copper(I) sulfide nanocrystals[J].Nano Letters,2008,8(8):2551-2555.

[8] Kim D H, Lee S J, Park M S, et al. Highly reproducible planar Sb2S3-sensitized solar cells based on atomic layer deposition[J].Nanoscale,2014,6(23):14549-14554.

[9] Du B, Zhang R, Chen K, et al. The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2[J].Journal of Materials Chemistry A,2017,5(7):3249-3259.

[10] Zakutayev A, Baranowski L L, Welch A W, et al. Comparison of Cu2SnS3 and CuSbS2 as potential solar cell absorbers[C].Photovoltaic Specialist Conference. IEEE, 2014.

[11] Welch A W, Zawadzki P P, Lany S, et al. Self-regulated growth and tunable properties of CuSbS2 solar absorbers[J].Solar Energy Materials & Solar Cells,2015,132(132):499-506.

[12] Wan L, Ma C, Hu K, et al. Two-stage co-evaporated CuSbS2 thin films for solar cells[J].Journal of Alloys and Compounds,2016,680:182-190.

[13] Chalapathi U, Poornaprakash B, Ahn C H, et al. Two-stage processed CuSbS2 thin films for photovoltaics: effect of Cu/Sb ratio[J].Ceramics International,2018,44(12):14844-14849.

[14] Yu L P, Kokenyesi R S, Keszler D A, et al. Inverse design of high absorption thin-film photovoltaic materials[J].Advanced Energy Materials,2013,3(1):43-48.

[15] Zhang L, Li Y B, Li X, et al. Solution-processed CuSbS2, thin film: a promising earth-abundant photocathode for efficient visible- light-driven hydrogen evolution[J].Nano Energy,2016,28:135-142.

[16] Marino C, Block T, Pottgen R, et al. CuSbS2 as a negative electrode material for sodium ion batteries[J].Journal of Power Sources,2017,342:616-622.

[17] Yang B, Wang L, Han J, et al. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study[J].Chemistry of Materials,2014,26(10):3135-3143.

[18] Ramasamy K, Sims H, Butler W H, et al. Mono-, few-, and multiple layers of copper antimony sulfide(CuSbS2): a ternary layered sulfide[J].Journal of the American Chemical Society,2014,136(4):1587-1598.

[19] Moosakhani S, Alvani A A, Mohammadpour R, et al. Solution synthesis of CuSbS2, nanocrystals: a new approach to control shape and size[J].Journal of Alloys and Compounds,2018,736:190-201.

[20] Lucas, Peng H, Johnston S, et al. Characterization of defects in copper antimony disulfide[J].J. Mater. Chem. A,2017,41(5):21986-21993.

[21] De K R, Donald I J. Model based predictive control in RTP semiconductor manufacturing[C].IEEE International Conference on Control Applications. IEEE,1999.

[22] Vinayakumar V, Shaji S, Avellaneda D, et al. CuSbS2 thin films by rapid thermal processing of Sb2S3-Cu stack layers for photovoltaic application[J].Solar Energy Materials and Solar Cells,2017,164:19-27.

[23] Cho A, Ahn S J, Ho Yun J, et al. Non-vacuum processed CuInSe2 thin films fabricated with a hybrid ink[J].Solar Energy Materials and Solar Cells,2013,109:17-25.

[24] Cho A, Ahn S J, Yun J H, et al. Carbon layer reduction via a hybrid ink of binary nanoparticles in non-vacuum-processed CuInSe2 thin films[J].Solar Energy Materials and Solar Cells,2013,110(3):126-132.

[25] Banu S, Ahn S J, Ahn S K, et al. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks[J].Solar Energy Materials and Solar Cells,2016,157:14-23.

[26] Banu S, Cho Y, Kim K, et al. Effect of Cu content in CuSbS2 thin films using hybrid inks: their photovoltaic properties and defect characteristics[J].Solar Energy Materials and Solar Cells,2019,189:214-223.

[27] Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors[J].Solar Energy Materials and Solar Cells,2007,91(13):1199-1201.

[28] Wang W, Hao L, Zhang W, et al. Preparation of CuSbS2 thin films by a facile and low-cost chemical solution method[J].Journal of Materials Science:Materials in Electronics,2017,29(5):4075-4079.

[29] Liu Y, Chen C, Zhou Y, et al. Butyldithiocarbamate acid solution processing: fundamentals and its application in chalcogenide thin film solar cells[J].Journal of Materials Chemistry C,2019.

[30] Choi Y C, Yeom E J, Ahn T K, et al. CuSbS2-sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution[J].Angewandte Chemie,2015,127(13):4077-4081.

[31] Whittles T J, Veal T D, Savory C N, et al. Core-levels, band alignments, and valence band states in CuSbS2 for solar cell applications[J].ACS Applied Materials & Interfaces,2017,9(48):41916-41926.

[32] Zhang Y F, Huang J L, Yan C, et al. High open-circuit voltage CuSbS2 solar cells achieved through the formation of epitaxial growth of CdS/CuSbS2 heterointerface by post-annealing treatment[J].Progress in Photovoltaics: Research and Applications,2019,27(1):37-43.

刘广辉, 郝凌云, 王威, 孙悦, 柏航. CuSbS2薄膜制备方法及其太阳能电池的研究进展[J]. 人工晶体学报, 2020, 49(4): 738. LIU Guanghui, HAO Lingyun, WANG Wei, SUN Yue, BAI Hang. Preparation Methods of CuSbS2 Thin Film and Its Research Progress on Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(4): 738.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!