光学 精密工程, 2013, 21 (9): 2294, 网络出版: 2013-09-25   

微型光纤磁传感器的设计与制作

Design and fabrication of micro fiber-optic magnetic sensor
作者单位
1 中国科学院 上海微系统与信息技术研究所 传感技术国家重点实验室微系统技术重点实验室,上海 200050
2 中国科学院大学, 微系统与信息技术学院, 上海 200050
摘要
提出了一种基于微机电系统(MEMS)扭镜结构的光纤磁场传感器, 并利用对角度变化非常敏感的双光纤准直器对扭镜的扭转角度进行了检测。该MEMS光纤磁传感器由MEMS扭镜结构、磁性敏感薄膜和双光纤准直器组成。文中分析了器件的磁敏感原理和光纤检测原理, 介绍了器件综合设计方法, 并给出了器件的结构参数。利用MEMS加工技术成功制作出了MEMS光纤磁传感器样品, 最终得到的磁传感器的尺寸为3.7 mm×2.7 mm×0.5 mm。对磁传感器进行了实验测试, 得到的输出实验值与理论值吻合。测试结果表明, 该磁传感器的光纤检测灵敏度可达到0.65 dB/mT, 最小可分辨磁场可达167 nT。将MEMS敏感结构与光纤检测相结合, 该传感器兼备了两者的优点, 结构紧凑、制作工艺简单、工作时无需电流激励。
Abstract
A Micro-electro-mechanical System(MEMS) fiber-optic magnetic sensor based on a MEMS torsional mirror was proposed and a dual-fiber collimator was used for measuring the tiny angle of torsional mirror. The MEMS fiber-optic magnetic senor is consists of a MEMS torsional mirror, a magnetic film and a dual fiber collimator. The mechanisms of magnetic sensing and optical detection of the device were described, and the design and optimization of the device were discussed. A prototype for the MEMS magnetic sensor with a volume of 3.7 mm×2.7 mm×0.5 mm was fabricated successfully by MEMS technologies. The measured output values of the magnetic sensor are consistent with theoretical values. Experimental results indicate that the sensitivity of the magnetic sensor is 0.65 dB/mT. and its minimum resolution magnetic field is 167 nT. The MEMS fiber-optic magnetic sensor combines fiber-optic measurement and compact MEMS structure, and it has advantages of compact construct and simple fabrication processes. Moreover, it can operate without current excitation.
参考文献

[1] GUILLERMO V Q, MANUEL R L, ALFONSO C R, et al.. Design of a low-consumption fluxgate transducer for high-current measurement applications [J]. IEEE Sensor Journal,2011,11(2): 280-287.

[2] 郑小林, 李金, 侯文生, 等. 应用磁传感器阵列定位跟踪消化道诊疗胶囊[J]. 光学 精密工程, 2009,17(3): 576-582.

    ZENG X L, LI J, HOU W SH, et al.. Localizing and tracking of medical capsule in human by magnetic sensor array [J]. Opt. Precision Eng., 2009,17(3): 576-582. (in Chinese)

[3] VYHNANEK J, JANOSEK M, RIPKA P. AMR gradiometer for mine detection [J]. Sensors and Actuators A, 2012,186: 100-104.

[4] RIPKA P. Advances in fluxgate sensors [J]. Sensors and Actuators A, 2003, 106: 8-14.

[5] HAUSER H,HOCHREITER J, STANGL G, et al.. Anisotropic magnetoresistance effect field sensors [J].Journal of Magnetism and Magnetic Materials, 2000, 215-216: 788-791.

[6] PAUN M Al, SALLESE J M, KAYAL M. Offset and drift analysis of the hall effect sensor. The geometrical parameters influence [J]. Digest Journal of Nanomaterials and Biostructures, 2012, 7(3): 883-891.

[7] LI M, ROUF V T, THOMPSON M J, et al.. Three-axis lorentz-force magnetic sensor for electronic compass applications [J]. Journal of Microelectromechanical Systems, 2012, 21(4): 1002-1010.

[8] TAPIA J A, HERRERA-MAY A L, GARCIA-RAMIREZ P J, et al.. Sensing magnetic flux density of artificial neurons with a MEMS device [J]. Biomedical Microdevices, 2011, 13(2): 303-313.

[9] CHEN J, QIN M, HUANG Q A. Detecting magnetic field direction by a micro beam operating in different vibration modes [J]. Chinese Physics B, 2011,20(9): 097101-1-9.

[10] DU G T, CHEN X D. MEMS magnetometer based on magnetorheological elastomer [J]. Measurement,2012, 45(1): 54-58.

[11] DILELLA D, WHITMAN L J, COLTON R J, et al.. A micromachined magnetic-field sensor based on an electron tunneling displacement transducer [J]. Sensors and Actuators A, 2000, 86(1-2): 8-20.

[12] VASQUEZ D J, JUDY J W. Optically-interrogated zero-power MEMS magnetometer [J]. Journal of Microelectromechanical Systems, 2007, 16(2): 336-343.

[13] 张旭苹, 高岑, 王峰, 等. 应力传感光缆的应力传递特性[J]. 光学 精密工程, 2011, 19(12): 2891-2899.

    ZHANG X P, GAO C, WANG F, et al.. Stress transfer performance of strain sensing cable [J]. Opt. Precision Eng., 2011, 19(12): 2891-2899. (in Chinese)

[14] 林巧, 陈柳华, 李书, 等. 基于光纤-镜面干涉腔的光纤加速度计[J].光学 精密工程, 2011,19(6): 1179-1184.

    LIN Q, CHEN L H, LI S, et al.. Fiber optic accelerometer based on fiber-mirror interference cavity [J]. Opt. Precision Eng., 2011, 19(6): 1179-1184. (in Chinese)

[15] 王宏亮, 宋娟, 冯德全, 等.应用于特殊环境的光纤光栅温度压力传感器[J]. 光学 精密工程, 2011,19(3): 545-551.

    WANG H L, SONG J, FENG D Q, et al.. High temperature-pressure FBG sensor applied to special environments [J]. Opt. Precision Eng., 2011, 19(3): 545-551. (in Chinese)

[16] 胡友秋,程福臻,刘之景.电磁学[M].北京: 高等教育出版社,1994.

    HU Q Y, CHENG F ZH, LIU ZH J. Electromagnetics [M]. Beijing: High Education Press, 1994. (in Chinese)

[17] BAO M H. Analysis and Design Principles of MEMS Devices [M]. Elsevier, 2005.

[18] GILSDORF R W, PALAIS J C. Single-mode fiber coupling efficiency with graded-index rod lenses [J]. Applied Optics, 1994, 33(16): 3440-3445.

[19] YUAN S F, RIZA N A. General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses [J]. Applied Optics, 1999, 38(15): 3214-3222.

[20] NIARCHOS D. Magnetic MEMS: key issues and some applications [J]. Sensors and Actuators A, 2003, 109: 166-173.

龙亮, 钟少龙, 徐静, 吴亚明. 微型光纤磁传感器的设计与制作[J]. 光学 精密工程, 2013, 21(9): 2294. LONG Liang, ZHONG Shao-long, XU jing, WU Ya-ming. Design and fabrication of micro fiber-optic magnetic sensor[J]. Optics and Precision Engineering, 2013, 21(9): 2294.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!