中国激光, 2016, 43 (8): 0801010, 网络出版: 2016-08-10   

低功耗、小型化稳频激光系统的设计与实现于 下载: 753次

Design and Implementation of Miniaturized Frequency-Stabilized Laser System with Low Power Consumption
作者单位
北京大学信息科学技术学院, 北京 100871
摘要
设计并实现了一种低功耗、小型化、可长期稳定运行的自动稳频激光系统。通过设计并实现高效率、低纹波的电压源,较大幅度地降低了整个系统的功耗和体积;通过设计并实现高性能温度控制电路、电流控制电路和稳频电路,得到了线宽较窄、频率稳定度较高的输出激光。该系统能够自动长期稳频,输出激光线宽约为1 MHz,稳定度指标为秒稳定度1.43×10-10,十秒稳定度3.90×10-11,百秒稳定度1.28×10-11,千秒稳定度2.25×10-11。在稳定度略优于商用外腔半导体激光器的前提下,该激光系统电源体积缩小了约85%,整机功耗降低了约90%,为实现半导体稳频激光系统的低功耗和小型化提供了一种新的方案。
Abstract
We designed and realized a compact laser system of which the frequency can be automatically stabilized. The laser system can operate with low power consumption and long-term stability. The power consumption and the volume of the system are reduced through our designed voltage source with high efficiency and low ripple. With the high-performance temperature controller, current controller and automatic frequency stabilization modules, a laser with narrow linewidth and high frequency stability is realized. The linewidth is about 1 MHz, and the frequency stabilities at 1, 10, 100, 1000 s are 1.43×10-10, 3.90×10-11, 1.28×10-11, 2.25×10-11, respectively. Compared with the commercial external-cavity diode lasers, the designed system has better long-term frequency stability. The volume of the power supply for the system is reduced by 85%, and the power consumption is reduced by 90%. The system is a new scheme for realizing low power consumption and miniaturization of the frequency-stabilized semiconductor laser system.
参考文献

[1] Wright K C, Leslie L S, Bigelow N P. Optical control of the internal and external angular momentum of a Bose-Einstein condensate[J]. Physical Review A, 2008, 77(4): 041601.

[2] 郑公爵, 戴大鹏, 方银飞, 等. 基于PDH技术的光学传递腔的锁定[J]. 激光与光电子学进展, 2014, 51(12): 121401.

    Zheng Gongjue, Dai Dapeng, Fang Yinfei, et al. Locking of optical transfer cavity based on PDH technique[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121401.

[3] Niering M, Holzwarth R, Reichert J, et al. Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock[J]. Physical Review Letters, 2000, 84(24): 5496-5499.

[4] Patton B, Zhivun E, Hovde D C, et al. All-optical vector atomic magnetometer[J]. Physical Review Letters, 2014, 113(1): 013001.

[5] Bodart Q, Merlet S, Malossi N, et al. A cold atom pyramidal gravimeter with a single laser beam[J]. Applied Physics Letters, 2010, 96(13): 134101.

[6] Chow W W, Gea-Banacloche J, Pedrotti L M, et al. The ring laser gyro[J]. Review of Modern Physics, 1985, 57(1): 61-104.

[7] 江晓, 张晨, 蔡文奇, 等. 冷原子实验用的半导体激光器稳频系统[J]. 中国激光, 2010, 37(1): 82-86.

    Jiang Xiao, Zhang Chen, Cai Wenqi, et al. Frequency stabilization system of diode laser for cold atom experiment[J]. Chinese J Lasers, 2010, 37(1): 82-86.

[8] 韩亚帅, 温馨, 白建东, 等. 采用铷原子射频频率调制光谱与调制转移光谱对1560 nm激光经波导倍频至780 nm进行稳频的比较[J]. 光学学报, 2014, 34(5): 0530002.

    Han Yashuai, Wen Xin, Bai Jiandong, et al. Laser frequency stabilization of 1560 nm laser after frequency doubling to 780 nm with a waveguide: Radio-frequency frequency-modulation spectroscopy versus modulation transfer spectroscopy with Rb atoms[J]. Acta Optica Sinica, 2014, 34(5): 0530002.

[9] 韩顺利, 仵欣, 林强. 半导体激光器稳频技术[J]. 红外与激光工程, 2013, 42(5): 1189-1193.

    Han Shunli, Wu Xin, Lin Qiang. Frequency stabilization technologies of semiconductor laser[J]. Infrared and Laser Engineering, 2013, 42(5): 1189-1193.

[10] van Zoest T, Gaaloul N, Singh Y, et al. Bose-Einstein condensation in microgravity[J]. Science, 2010, 328(5985): 1540-1543.

[11] 屈求智, 夏文兵, 汪斌, 等. 空间激光冷却原子集成光学平台设计[J]. 光学学报, 2015, 35(6): 0602003.

    Qu Qiuzhi, Xia Wenbing, Wang Bin, et al. Integrating design of a compact optical system for space laser cooling application[J]. Acta Optica Sinica, 2015, 35(6): 0602003.

[12] 马修泉, 陈文兰, 陈帅, 等. 半导体激光器塞曼调制稳频的实验对比研究[J]. 量子光学学报, 2005, 11(4): 171-175.

    Ma Xiuquan, Chen Wenlan, Chen Shuai, et al. Experimental study of diode laser frequency stabilization by Zeeman modulation[J]. Acta Sinica Quantum Optica, 2005, 11(4): 171-175.

[13] 袁杰, 陈徐宗, 陈文兰, 等. 外腔半导体激光器的设计与高次谐波稳频[J]. 红外与激光工程, 2007, 36(2): 152-154.

    Yuan Jie, Chen Xuzong, Chen Wenlan, et al. Structure design and third-harmonic frequency stabilization of the external cavity semiconductor laser[J]. Infrared and Laser Engineering, 2007, 36(2): 152-154.

[14] 苑丹丹, 胡姝玲, 刘宏海, 等. 激光器稳频技术研究[J]. 激光与光电子学进展, 2011, 48(8): 081401.

    Yuan Dandan, Hu Shuling, Liu Honghai, et al. Research of laser frequency stabilization[J]. Laser & Optoelectronics Progress, 2011, 48(8): 081401.

[15] Bayrakli I. Actively frequency-stabilized external cavity diode laser with a linewidth of 2.9 kHz[J]. Optical and Quantum Electronics, 2016, 48: 29.

[16] 袁杰, 陈文兰, 齐向辉, 等. 可调谐半导体激光器的高精密驱动电源与稳频设计[J]. 红外与激光工程, 2006, 35(z3): 115-119.

    Yuan Jie, Chen Wenlan, Qi Xianghui, et al. Design for power supply and frequency stabilization of ECL[J]. Infrared and Laser Engineering, 2006, 35(z3): 115-119.

[17] Haroche S, Hartmann F. Theory of saturated-absorption line shapes[J]. Physical Review A, 1972, 6(4): 1280-1300.

[18] 张胤, 王青. 自动稳频半导体激光器研究[J]. 中国激光, 2014, 41(6): 0602001.

    Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser[J]. Chinese J Lasers, 2014, 41(6): 0602001.

[19] Ye J, Swartz S, Jungner P, et al. Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state[J]. Optics Letters, 1996, 21(16): 1280-1282.

[20] Maniktala S. 精通开关电源设计(二版)[M]. 王健强, 等, 译. 北京: 人民邮电出版社, 2014.

    Maniktala S. Switching power supplies A to Z (2nd edition)[M]. Wang Jianqiang, et al. Transl. Beijing: Posts & Telecom Press, 2014.

[21] Pressman A I. 开关电源设计(二版)[M]. 王志强, 等, 译. 北京: 电子工业出版社, 2006.

    Pressman A I. Switching power supply design (2nd edition)[M]. Wang Zhiqiang, et al. Transl. Beijing: Publishing House of Electronics Industry, 2006.

于齐, 熊炜, 张胤, 陈徐宗, 段晓辉. 低功耗、小型化稳频激光系统的设计与实现于[J]. 中国激光, 2016, 43(8): 0801010. Yu Qi, Xiong Wei, Zhang Yin, Chen Xuzong, Duan Xiaohui. Design and Implementation of Miniaturized Frequency-Stabilized Laser System with Low Power Consumption[J]. Chinese Journal of Lasers, 2016, 43(8): 0801010.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!