中国激光, 2013, 40 (1): 0103002, 网络出版: 2012-11-22  

Nb4Si含量对激光熔覆Ti-Fe合金涂层组织和性能的影响

Influence of Nb4Si Content on Microstructure and Properties of Ti-Fe Alloy Coating Prepared by Laser Cladding
作者单位
大连理工大学三束材料改性教育部重点实验室, 辽宁 大连 116023
摘要
采用激光熔覆技术,在TA15钛合金表面制备了具有不同Nb4Si添加量的Ti-Fe合金涂层。采用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计、纳米压痕仪和摩擦磨损试验机,系统研究了Nb4Si含量对合金涂层组织和性能的影响规律。研究结果表明,不同Nb4Si含量的Ti-Fe合金涂层皆主要是由β-TiNb树枝初晶和β-TiNb+TiFe共晶组织所构成。但有所不同的是,随着Nb4Si添加量的增加,涂层中共晶组织的数量呈现出先增后减的变化趋势,即在Nb4Si添加量为2.0%(粒子数分数,下同)时,共晶组织的数量为最多,且在Nb4Si的添加量超过0.5%时,涂层中开始有少量的β-(TiNb)5Si3相形成。由于受共晶组织增强作用的影响,在Nb4Si添加量为2.0%时,合金涂层的硬度、减磨性和耐磨性能为最高,而弹性模量为最低。
Abstract
Ti-Fe alloy coatings with different Nb4Si additions are prepared by laser cladding on TA15 alloy. The influence of Nb4Si content on microstructures and properties of the coatings are investigated by means of X-ray diffraction, scanning electron microscopy (SEM), microhardness tester, nano-indenter, and frication wear testing machine. The results show that the coatings with different Nb4Si additions mainly consist of β-TiNb dendrite and β-TiNb+TiFe eutectic. However, what has changed is that with the increase of the Nb4Si addition, the content of the eutectic presents the trend of first increasing then decreasing, namely, the highest value is obtained when the atomic fraction of Nb4Si particles is 2.0%. Another change in the microstructure is that a small amount of β-(TiNb)5Si3 phase is formed when the atomic fraction of Nb4Si addition is beyond 0.5%. When the atomic fraction of Nb4Si addition is 2.0%, the hardness, friction and wear properties of the coatings all reach the highest, while the elastic module is the lowest, as a result of high eutectic content.
参考文献

[1] 闫平, 王利, 赵军 等. 高强度铸造钛合金的应用及发展[J]. 铸造, 2007, 56(5): 451~452

    Yan Ping, Wang Li, Zhao Jun et al.. Development and applications of the high-strength cast Titanium alloy[J]. Foundry, 2007, 56(5): 451~452

[2] 耿保友. 新材料科技导论[M]. 浙江: 浙江大学出版社, 2007

    Geng Baoyou. New materials science and technology introduction[M]. Zhejiang: Zhejiang University Press, 2007

[3] J. S. Selvan, K. Subramanian, A. K. Nath et al.. Laser burnishing of Ti-6Al-4V as a result of laser alloying with pre-placed BN[J]. Materials Science and Engineering, 1999, 260(1-2): 178~187

[4] Fengxiao Huang, Zhonghao Jiang, Ximing Liu et al.. Microstructure and properties of thin wall by laser cladding forming[J]. Journal of Materials Processing Technology, 2009, 209(11): 4970~4976

[5] 李春彦, 张松, 康煜平 等. 综述激光熔覆材料的若干问题[J]. 激光杂志, 2002, 23(3): 5~9

    Li Chunyan, Zhang Song, Kang Yuping et al.. Comment on material system for laser cladding[J]. Laser Journal, 2002, 23(3): 5~9

[6] 冯淑容, 张述泉, 王华明. 钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性[J]. 中国激光, 2012, 39(2): 0203002

    Feng Shurong, Zhang Shuquan, Wang Huaming. Wear resistance of laser clad hard particles reinforced intermetallic composite coating on TA15 alloy[J]. Chinese J. Lasers, 2012, 39(2): 0203002

[7] 姚标, 王存山, 王锐 等. 扫描速度对激光熔覆NiAlBSi高温合金涂层组织和性能的影响[J]. 中国激光, 2011, 38(10): 1003001

    Yao Biao, Wang Cunshan, Wang Rui et al.. Influence of scanning velocity on microstructure and properties of laser clad NiAlBSi high-temperature alloy coatings[J]. Chinese J. Lasers, 2011, 38(10): 1003001

[8] D. V. Louzguine, H. Kato, A. Inoue. High strength and ductile binary Ti-Fe composite alloy[J]. Journal of Alloys and Compounds, 2004, 384: L1~L3

[9] D. V. Louzguine, H. Kato. High-strength binary Ti-Fe bulk alloys with enhanced ductility[J]. Journal of Materials Research, 2004, 19(12): 3600~3606

[10] M. Niinomi, P. Kvroda, K. Fvkvnhga et al.. Corrosion wear fracture of new β type biomedical titanium alloys[J]. Materials Science and Engineering A, 1999, 263(2): 193~199

王锐, 王存山. Nb4Si含量对激光熔覆Ti-Fe合金涂层组织和性能的影响[J]. 中国激光, 2013, 40(1): 0103002. Wang Rui, Wang Cunshan. Influence of Nb4Si Content on Microstructure and Properties of Ti-Fe Alloy Coating Prepared by Laser Cladding[J]. Chinese Journal of Lasers, 2013, 40(1): 0103002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!