激光与光电子学进展, 2017, 54 (6): 060502, 网络出版: 2017-06-08  

基于铌酸锂的高阶可调谐布拉格波导光栅特性分析 下载: 518次

Characteristic Analysis of High-Order Tunable Bragg Waveguide Grating Based on Lithium Niobate
作者单位
1 天津理工大学电气电子工程学院, 天津 300384
2 光电器件与通信技术教育部工程研究中心, 天津 300384
摘要
提出了一种可在铌酸锂上利用光刻及钛扩散方法实现高阶可调谐的布拉格波导光栅结构,并对其相关特性进行了分析。分析了占空比、光栅阶数、波导宽度差及外加电压对高阶布拉格波导光栅反射谱特性的影响。结果表明,折射率调制度、最大反射率与零值带宽均随占空比呈周期性变化,中心波长随占空比的增加向长波方向漂移。在各阶光栅均取最佳占空比时,折射率调制度最大;随着光栅长度的增大,最大反射率增大而零值带宽减小。随着波导宽度差的增大,最大反射率及零值带宽均增大,中心波长向长波方向漂移。当外加电压增加时,反射谱谱线形状几乎不变化,中心波长会向长波方向漂移,且呈线性增长趋势。
Abstract
A high-order tunable Bragg waveguide grating can be prepared on lithium niobate by using the methods of photolithography and titanium diffusion. Its related characteristics are analyzed. The effects of duty cycle, grating order, waveguide width difference and applied voltage on the reflective spectral properties of higher-order Bragg waveguide gratings are analyzed. The results show that the refractive index modulation depth, the maximum reflectivity and the zero bandwidth of gratings change periodically with the duty cycle, and the central wavelength shifts to the longer wavelength with the increase of duty cycle. When the best duty cycle is chosen for each order grating, the refractive index modulation depth is the largest, and the maximum reflectivity increases and the zero bandwidth decreases with the increase of grating length. With the increase of waveguide width difference, both of the maximum reflectivity and the zero bandwidth increase, and the central wavelength shifts to the longer wavelength. Moreover, with the increase of applied voltage, the reflective spectral shapes almost remain the same and the central wavelength shifts to the longer wavelength and presents a linear growth trend.
参考文献

[1] 张 明, 任建文, 陈 文, 等. 光折变长周期波导光栅耦合器的设计和分析[J]. 光学学报, 2015, 35(3): 0313002.

    Zhang Ming, Ren Jianwen, Chen Wen, et al. Design and analysis of photorefractive long-period waveguide grating coupler[J]. Acta Optica Sinica, 2015, 35(3): 0313002.

[2] 张爱玲, 何培栋, 潘洪刚, 等. 电控可调谐的正交偏振双波长滤波器的设计[J]. 激光与光电子学进展, 2015, 52(7): 072301.

    Zhang Ailing, He Peidong, Pan Honggang, et al. Design of electrically controlled double wavelength orthogonal polarization tunable filter[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072301.

[3] 张爱玲, 田红苗, 李青青, 等. 基于相位掩模法的高阶布拉格波导光栅特性[J]. 激光与光电子学进展, 2017, 54(1): 010603.

    Zhang Ailing, Tian Hongmiao, Li Qingqing, et al. Characteristics of high-order Bragg waveguide grating based on phase-mask method[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010603.

[4] Kocabas A, Aydinli A. Polymeric waveguide Bragg grating filter using soft lithography[J]. Optics Express, 2006, 14(22): 10228-10232.

[5] Kobayashi S, Sawada M, Suda T, et al. Narrow tunable polysilane optical waveguide Bragg grating filters[J]. IEEE Photonics Technology Letters, 2007, 19(6): 363-365.

[6] 王义平, 陈建平, 李新碗, 等. 快速可调谐电光聚合物波导光栅[J]. 物理学报, 2005, 54(10): 4782-4788.

    Wang Yiping, Chen Jianping, Li Xinwan, et al. Fast tunable electro-optic polymer waveguide gratings[J]. Acta Physica Sinica, 2005, 54(10): 4782-4788.

[7] Chang A S P, Morton K J, Tan H, et al. Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2007, 19(19): 1457-1459.

[8] Wong W H, Pun E Y B, Chan K S. Electron beam direct-write tunable polymeric waveguide grating filter[J]. IEEE Photonics Technology Letters, 2003, 15(12): 1731-1733.

[9] 张 明, 孟惠云, 陈刘伟, 等. 基于光折变光栅的可调谐滤波方案及特性分析[J]. 光电工程, 2012, 39(4): 96-101.

    Zhang Ming, Meng Huiyun, Chen Liuwei, et al. Tunable filtering scheme and characteristics analysis based on photorefractive gratings[J]. Opto-Electronic Engineering, 2012, 39(4): 96-101.

[10] Pierno L, Dispenza M, Secchi A, et al. A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(6): 401-405.

[11] Ghoumid K, Benkelfat B E, Ferriere R, et al. Wavelength-selective Ti∶LiNbO3 multiple Y-branch coupler based on focused ion beam milled Bragg reflectors[J]. IEEE Journal of Lightwave Technology, 2011, 29(23): 3536-3541.

[12] Son N, Kim K, Kim J, et al. Near-infrared tunable lasers with polymer waveguide Bragg gratings[J]. Optics Express, 2012, 20(2): 827-934.

[13] 庞梦瑶, 程新利, 秦长发, 等. 瑞红RZJ-304光刻胶光刻工艺研究[J]. 苏州科技学院学报, 2015, 32(3): 20-24.

    Pang Mengyao, Cheng Xinli, Qin Changfa, et al. A study on lithography process for the Ruihong RZJ-304 photoresist[J]. Journal of Suzhou University of Science and Technology, 2015, 32(3): 20-24.

[14] Quirk M, Serda J. Semiconductor manufacturing technology[M]. New Jersey: Prentice Hall, 2001.

[15] Grobnic D, Mihailov S J, Smelser C W, et al. Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1453-1455.

[16] Erdogan T. Fiber grating spectra[J]. IEEE Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

[17] 周会娟, 孟 洲, 廖 毅. 铌酸锂波导电光强度调制器的移频特性[J]. 中国激光, 2009, 36(4): 901-905.

    Zhou Huijuan, Meng Zhou, Liao Yi. Frequency shift characteristics analysis of LiNbO3 waveguide electro-optic intensity modulator[J]. Chinese J Lasers, 2009, 36(4): 901-905.

[18] Macario J, Schuetz C A, Yao P, et al. Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system[C]. SPIE, 2011, 8188: 81880E.

王钊, 张爱玲, 田红苗, 李青青. 基于铌酸锂的高阶可调谐布拉格波导光栅特性分析[J]. 激光与光电子学进展, 2017, 54(6): 060502. Wang Zhao, Zhang Ailing, Tian Hongmiao, Li Qingqing. Characteristic Analysis of High-Order Tunable Bragg Waveguide Grating Based on Lithium Niobate[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060502.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!