光子学报, 2016, 45 (9): 0912007, 网络出版: 2016-10-19   

中心支撑610 mm圆形主镜的超轻量化设计

Ultra-lightweight Design of 610 mm Circular Primary Mirror Supported in Centre
包奇红 1,2,*沙巍 1,2陈长征 1,2任建岳 1,2
作者单位
1 中国科学院长春光学精密机械与物理研究所, 长春 130033
2 中国科学院大学, 北京 100039
摘要
为满足轻小卫星相机质量更轻、性能更好的要求, 对某离轴三反空间相机610 mm口径圆形主镜进行了超轻量化设计.选用背部中心单点支撑方式, 采用变筋厚和变筋高的设计形式, 结合集成优化方法, 设计的主镜质量仅为6.23 kg, 面密度约为21.3 kg/m2.并设计了主镜的支撑结构, 仿真分析了组件的静、动力学性能.结果表明:三个方向重力工况下主镜的面形准确度(RMS值)均优于6 nm, 4℃均匀温变载荷工况下主镜的面形准确度优于1 nm; 主镜组件的一阶自然频率为112 Hz, 频响分析的最大应力发生在钛合金柔性连接件的螺栓孔处, 最大应力值为104 MPa, 远小于钛合金的屈服极限870 MPa.主镜轻量化效果显著, 主镜组件的静、动力学性能均满足设计要求, 本文所述单点支撑形式的最大适用口径为683 mm, 为同类型空间反射镜的超轻量化设计提供了思路和参考.
Abstract
A circular primary mirror of an off-axis three mirror anastigmat space camera with an aperture of 610 mm was ultra–lightweight designed to meet the requirement of designing lighter and better satellite cameras. By choosing the back-centre-single point supporting way, using the variable rib thickness and the variable rib height sturctural style and combining with the integrated optimization design method, the mirror was designed with a weight of only 6.23 kg and the surface density about 21.3 kg/m2. The support structure for the mirror was designed and the static and dynamic performances of the mirror subassembly were simulated. The simulation results show that the surface figure error (RMS value) is less than 6nm when the mirror subassembly is under the load condition of gravity in three different directions and is less than 1nm when the temperature variation is within ±4℃. The first-order natural frequency of the mirror subassembly is 112 Hz. The results of frequency response analysis present that the maximum stress in the screw hole of the flexible structure is below the yield strength of its material. All performance indexes of the ultra-lightweight mirror designed in this paper meet the requirements of design and the maximum aperture of the mirror which can be supported by single point in centre is 610 mm. The design proposes a method and reference to ultra-lightweight design of same type mirrors.
参考文献

[1] 詹亚锋, 马正新, 曹志刚. 现代微小卫星技术及发展趋势[J]. 电子学报, 2000, 7(4):102-106.

    ZHAN Ya-feng, MA Zheng-xin, CAO Zhi-gang. Technology of modern micro satellite and its development direction[J]. Acta Electronica Sinia, 2000, 7(4):102-106.

[2] 陈永和, 陈洪达, 傅雨田. 适用于微小卫星平台的小型可见光相机设计[J]. 红外与激光工程, 2015, 44(7):2087-2029.

    CHEN Yong-he, CHEN Hong-da, FU Yu-tian. Optical design of small-sized camera in visible for micro-satellite[J]. Infrared and Laser Engineering, 2015, 44(7):2087-2029.

[3] 张德坷, 曹英斌, 刘荣军, 等. C/SiC复合材料空间光机结构的研究进展与展望[J]. 材料导报A, 2012, 26(7):7-11.

    ZHANG De-ke, CAO Ying-bin, LIU Rong-jun, et al. Progress and prospect of C/SiC composites used in space opto-mechanical structures[J]. Materials Review A, 2012, 26(7):7-11.

[4] 张媛媛, 敬畏, 程云涛, 等. 510mm SiC超轻量化反射镜的设计与有限元分析[J]. 光学 精密工程, 2012, 20(8):1718-1724.

    ZHANG Yuan-yuan, JING Wei, CHENG Yun-tao, et al. Design and finite element analysis of 510mm SiC ultra-lightweight mirror[J]. Optics and Precision Engineering, 2012, 20(8):1718-1724.

[5] 王忠善, 何欣, 付亮亮. 空间相机用大口径圆形主反射镜设计[J]. 红外, 2014, 35(9):15-18.

    WANG Zhong-shan, HE Xin, FU Liang-liang. Design of large size circular primary mirror of space camera[J]. Infrared, 2014, 35(9):15-18.

[6] HIDEHIRO K, TAKASHI O, TAKAO N, et al. Cryogenic optical perfoemance of the ASTRO-F SiC telescope[J]. Applied Optics, 2005, 44(32): 6823-6832.

[7] GLEYZES M A, LIONEL P, KUBIK P. Pleiades system architecture and main perfoemance[C]. Melbourne: Remote Sensing and Spatial Information Sciences, 2012, XXXIX(B1):537-542.

[8] 王欣. 空间相机800mm口径反射镜与支撑结构优化设计研究[D]. 西安:西安光学精密机械研究所, 2014: 9-12.

[9] 韩光宇, 曹立华, 高云国, 等. 1m望远镜主反射镜的支撑和装配[J]. 光学 精密工程, 2012, 20(9):1923-1928.

    HAN Guang-yu, CAO Li-hua, GAO Yun-guo, et al. Supporting and assembling for primary mirrors of 1m aperture telescope[J]. Optics and Precision Engineering, 2012, 20(9):1923-1928.

[10] 袁健, 沙巍, 陈长征, 等. 长条形反射镜的集成优化设计[J]. 光电工程, 2015, 42(6):85-89.

    YUAN Jian, SHA Wei, CHEN Chang-zheng, et al. Integrated optimization design of rectangular reflective mirror[J]. Opto-Electronic Engineering, 2015, 42(6):85-89.

[11] 任建岳, 陈长征, 何斌, 等. SiC和SiC/Al在TMA空间遥感器中的应用[J]. 光学 精密工程, 2008, 16(12):2537-2543.

    REN Jian-yue, CHEN Chang-zheng, HE Bin, et al. Application of SiC and SiC/Al to TMA optical remote sensor[J]. Optics and Precision Engineering, 2008, 16(12):2537-2543.

[12] 徐宏, 关英俊. 大口径SiC轻量化反射镜组件的结构设计[J]. 红外与激光工程, 2014, 43(S):83-88.

    XU Hong, GUAN Ying-jun. Structural design of large aperture SiC mirror subassembly[J]. Infrared and Laser Engineering, 2014, 43(S):83-88.

[13] 陈洪达, 陈永和, 史婷婷, 等. 空间反射镜的轻量化及支撑结构设计研究[J]. 红外与激光工程, 2014, 43(2):535-540.

    CHEN hong-da, CHEN Yong-he, SHI Ting-ting, et al. Lightweight and mounting design for primary in space camera[J]. Infrared and Laser Engineering, 2014, 43(2):535-540.

[14] 袁健, 任建岳. 碳化硅反射镜轻量化结构的改进与优化[J]. 光子学报, 2015, 44(8):0812004.

    YUAN Jian, REN Jian-yue. Improvement and optimization of lightweight structure for SiC reflective mirror[J]. Acta Photonica Sinica, 2015, 44(8):0812004.

[15] 姜欣, 方立桥, 李明, 等. Isight参量优化理论与实例详解[M]. 北京:北京航空航天大学出版社, 2012:138-142.

[16] 刘湃, 黄巧林, 杨居奎. 大口径长焦距相机主次镜支撑结构方案初步研究[J]. 航天返回与遥感, 2014, 35(3):60-67.

    LIU Pai, HUANG Qiao-lin, YANG Ju-kui. Research on support structure between primary and secondary mirror in large-aperture and long-focal-length space camera[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(3):60-67.

包奇红, 沙巍, 陈长征, 任建岳. 中心支撑610 mm圆形主镜的超轻量化设计[J]. 光子学报, 2016, 45(9): 0912007. BAO Qi-hong, SHA Wei, CHEN Chang-zheng, REN Jian-yue. Ultra-lightweight Design of 610 mm Circular Primary Mirror Supported in Centre[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0912007.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!