发光学报, 2017, 38 (1): 7, 网络出版: 2017-02-09   

YVO4∶Yb3+,Er3+纳米粒子颜色可控的高色纯度上转换发光

High-purity and Color-tunable Up-conversion Luminescence of YVO4∶Yb3+,Er3+ Nanoparticles
作者单位
大连海事大学 物理系, 辽宁 大连116026
摘要
采用共沉淀法制备了四方相锆石型结构YVO4∶Yb3+,Er3+纳米粒子。粒子表面光滑,结晶良好,呈类球状,粒径~80 nm。在980 nm和1 550 nm红外激发下,粒子呈现类似的特征发射,峰位位于634~706 nm的红光和513~573 nm的绿色分别归因于Er3+离子4F9/2→4I15/2和2H11/2,4S3/2→4I15/2能级间的辐射跃迁。通过激发光波长控制,在同组分粒子中实现了颜色可控的高色纯度绿、红色发光,对应的绿红光和红绿光分支比分别高达29.5和37.97。借助能级跃迁模型,详细讨论了不同激发条件下的纳米粒子上转换发光的跃迁和变化机制。
Abstract
Near-spherical and well crystallized YVO4∶Yb3+,Er3+ nanoparticles with tetragonal zircon structure were prepared by co-precipitation method. The average particle size is 80 nm. Under 1 550 and 980 nm excitation, the observed emissions of the particles are similar and locate near 513-573 nm and 634-706 nm corresponding to 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions, respectively. By controlling the excitation wavelength, color-tunable and high-purity green and red up-conversion luminescence(UCL) from the same component nanoparticles can be obtained. Under the excitation of 980 nm, the intensity ratio value of green and red emission reaches 29.5. However, when the excitation source is replaced by 1 550 nm diode laser, a bright red emission with high color purity is observed. Here, the maximum value of the intensity ratio of red and green emission is 37.97. Furthermore, the different UCL transition mechanisms of the phosphor excited by 980 nm and 1 550 nm are discussed in detail by means of Er3+ energy model.
参考文献

[1] QIAO X S, FAN X P, XUE Z, et al.. Upconversion luminescence of Yb3+ /Tb3+ /Er3+ -doped fluorosilicate glass ceramics containing SrF2 nanocrystals [J]. J. Alloys Compd., 2011, 509(11):4714-4721.

[2] SINGH N S, NINGTHOUJAM R S, PHAOMEI G, et al.. Re-dispersion and film formation of GdVO4: Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies [J]. Dalton Trans., 2012, 41(15):4404-4412.

[3] STOUWDAM J W, VAN VEGGEL F C J M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles [J]. Nano Lett., 2002, 2(7):733-737.

[4] MEETEI S D, SINGH S D. Effects of crystal size, structure and quenching on the photoluminescence emission intensity, lifetime and quantum yield of ZrO2∶Eu3+ nanocrystals [J]. J. Lumin., 2014, 147:328-335.

[5] RIWOTZKI K, HAASE M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4∶Ln (Ln=Eu, Sm, Dy) [J]. J. Phys. Chem. B, 1998, 102(50):10129-10135.

[6] WILLIAMS D K, BIHARI B, TISSUE B M, et al.. Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+∶Y2O3 and comparison to Eu3+∶Y2O3 nanocrystals [J]. J. Phys. Chem. B, 1998, 102(6):916-920.

[7] FU J P, ZHANG Q H, LI Y G, et al.. Highly luminescent red light phosphor CaTiO3∶Eu3+ under near-ultraviolet excitation [J]. J. Lumin., 2010, 130(2):231-235.

[8] PEREIRA P F S, DE MOURA A P, NOGUEIRA I C, et al.. Study of the annealing temperature effect on the structural and luminescent properties of SrWO4∶Eu phosphors prepared by a non-hydrolytic sol-gel process [J]. J. Alloys Compd., 2012, 526:11-21.

[9] ANITHA M, RAMAKRISHNAN P, CHATTERJEE A, et al.. Spectral properties and emission efficiencies of GdVO4 phosphors [J]. Appl. Phys. A, 2002, 74(2):153-162.

[10] MEETEI S D, SINGH M D, SINGH S D. Facile synthesis, structural characterization, and photoluminescence mechanism of Dy3+ doped YVO4 and Ca2+ co-doped YVO4∶Dy3+ nano-lattices [J]. J. Appl. Phys., 2014, 115(20):204910-1-10.

[11] XU W, WANG Y, BAI X, et al.. Controllable synthesis and size-dependent luminescent properties of YVO4∶Eu3+ nanospheres and microspheres [J]. J. Phys. Chem. C, 2010, 114(33):14018-14024.

[12] YANG K S, ZHENG F, WU R N, et al.. Upconversion luminescent properties of YVO4∶Yb3+, Er3+ nano-powder by sol-gel method [J]. J. Rare Earths, 2006, 24(S1):162-166.

[13] TOLSTIK N A, TROSHIN A E, KURILCHIK S V, et al.. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+, Yb3+∶YVO4 crystal [J]. Appl. Phys. B, 2007, 86(2):275-278.

[14] TSANG Y H, BINKS D J. Record performance from a Q-switched Er3+∶Yb3+∶YVO4 laser [J]. Appl. Phys. B, 2009, 96(1):11-17.

[15] KUMAR G A, POKHREL M, SARDAR D K. Intense visible and near infrared upconversion in M2O2S∶Er (M=Y, Gd, La) phosphor under 1 550 nm excitation [J]. Mater. Lett., 2012, 68:395-398.

[16] WANG H, XING M M, LUO X X, et al.. Upconversion emission colour modulation of Y2O2S∶Yb, Er under 1.55 μm and 980 nm excitation [J]. J. Alloys Compd., 2014, 587:344-348.

[17] WANG H, JIANG T, XING M M, et al.. Up-conversion luminescence of Y2O3∶Yb, Er under 1.55 μm excitation [J]. Ceramics Int., 2015, 41(1):259-263.

[18] ZHANG Y M, LI Y H, LI P, et al.. Preparation and upconversion luminescence of YVO4∶Er3+, Yb3+ [J]. Int. J. Miner. Metall. Mater., 2010, 17(2):225-228.

[19] KUSHIDA T, GEUSIC J E. Optical refrigeration in Nd-doped yttrium aluminum garnet [J]. Phys. Rev. Lett., 1968, 21(16):1172-1175.

[20] CHANG M C, ELLIOTT S, GUSTAFSON T K, et al.. Observation of anti-Stokes fluorescence in organic dye solutions [J]. IEEE J. Quant. Electron., 1972, 8(6):527-528.

付姚, 史月, 王朝阳, 邢明铭, 田莹, 罗昔贤, 冷静. YVO4∶Yb3+,Er3+纳米粒子颜色可控的高色纯度上转换发光[J]. 发光学报, 2017, 38(1): 7. FU Yao, SHI Yue, WANG Zhao-yang, XING Ming-ming, TIAN Ying, LUO Xi-xian, LENG Jing. High-purity and Color-tunable Up-conversion Luminescence of YVO4∶Yb3+,Er3+ Nanoparticles[J]. Chinese Journal of Luminescence, 2017, 38(1): 7.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!