量子光学学报, 2012, 18 (2): 136, 网络出版: 2012-06-08   

小世界网络中的量子纠缠渗流

Entanglement Percolation in Small-World Quantum Networks
作者单位
苏州大学物理科学与技术学院, 江苏 苏州 215006
摘要
本文研究了小世界复杂网络中的长程量子纠缠态的制备。提出了量子纠缠渗流优化网络量子通信的方案。通过在经典纠缠渗流协议(CEP)中引入局域化的“target-swap”量子操作,形成量子纠缠渗流协议(QEP)。研究表明QEP在长程纠缠制备的效能方面明显优于CEP,通过度分布变化的分析解释了QEP具有优势的原因。
Abstract
Long-distance entanglement establishment is investigated on small-world complex network topologies. The quantum entanglement percolation (QEP) protocol is proposed to optimize networked quantum communications. If the additional local "target-swap" quantum operations are performed in the classical entanglement percolation (CEP) protocol, the QEP can be obtained. The QEP has great advantage over CEP with respect to the efficiency of long-distance entanglement establishment. The advantage may be due to the changes of the degree distributions in the QEP.
参考文献

[1] VIDAL G. Entanglement of Pure States for a Single Copy [J]. Phys Rev Lett, 1999, 83: 1046-1049.

[2] ELLIOTT C. Building the Quantum Network [J]. New J Phys, 2002, 4: 46.1-46.12.

[3] SCHMITT-MANDERBACH T, WEIER H, FURST M, et al. Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km [J]. Phys Rev Lett, 2007, 98: 010504-1-010504-4.

[4] XU J S, LI C F, XU X Y, et al. Experimental Characterization of Entanglement Dynamics in Noisy Channels [J]. Phys Rev Lett, 2009, 103: 240502-1-240502-4.

[5] ZHANG J, XIE C, and PENG K. Continuous-Variable Quantum State Transfer with Partially Disembodied Transport [J]. Phys Rev Lett, 2004, 95: 170501-1-170501-4.

[6] CHEN T Y, LIANG H, LIU Y, et al. Field Test of a Practical Secure Communication Network with Decoy-State Quantum Cryptography [J]. Opt Exp, 2009, 17: 6540-6549.

[7] BRIEGEL H J, DUR W, CIRAC J I, et al. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication [J]. Phys Rev Lett, 1998, 81: 5932-5935.

[8] DUR W, BRIEGEL H J, CIRAC J I, et al. Quantum Repeaters Based on Entanglement Purification [J]. Phys Rev A, 1999, 59: 169-181.

[9] GISIN N, THEW R. Quantum Communication [J]. Nature Photonics, 2007, 1: 165-171.

[10] PERSEGUERS S, CAVALCANTI D, LAPEYRE Jr G J, et al. Multipartite Entanglement Percolation [J]. Phys Rev A, 2010, 81: 032327-1-032327-4.

[11] LAPEYRE Jr G J, WEHR J, LEWENSTEIN M. Enhancement of Entanglement Percolation in Quantum Networks via Lattice Transformations [J]. Phys Rev A, 2009, 79: 042324-1-042324-11.

[12] MODLAWSKA J, GRUDKA A. Nonmaximally Entangled States Can Be Better for Multiple Linear Optical Teleportation [J]. Phys Rev Lett, 2008, 100: 110503-1-110503-4.

[13] CUQUET M, CALSAMIGLIA J. Entanglement Percolation in Quantum Complex Network [J]. Phys Rev Lett, 2009, 103: 240503-1-240503-4.

[14] CUQUET M, CALSAMIGLIA J. Limited-Path-Length Entanglement Percolation in Quantum Complex Networks [J]. Phys Rev A, 2011, 83: 032319-1-032319-14.

[15] PERSEGUERS S, CIRAC J I, ACIN A, et al. Entanglement Distribution in Pure-State Quantum Networks [J]. Phys Rev A, 2008, 77: 022308-1-022308-14.

[16] PERSEGUERS S, JIANG L, SCHUCH N, et al. One-Shot Entanglement Generation over Long Distances in Noisy Quantum Networks [J]. Phys Rev A, 2008, 78: 062324-1-062324-6.

[17] DOYLE J C, ALDERSON D L, LI L, et al. The “Robust yet Fragile” Nature of the Internet [J]. Proc Natl Acad Sci USA, 2005, 102: 14497-14502.

[18] BROADFOOT S, DORNER U, JAKSCH D. Long-Distance Entanglement Generation in Two-Dimensional Networks [J]. Phys Rev A, 2010, 82: 042326-1-042326-9.

[19] BARRETT S D, STACE T M. Fault Tolerant Quantum Computation with Very High Threshold for Loss Errors [J]. Phys Rev Lett, 2010, 105: 200502-1-200502-4.

[20] WATTS D J, STROGATZ S H. Collective Dynamics of “Small-World” Networks [J]. Nature, 1998, 393: 440-442.

[21] NEWMAN M E J, WATTS D J. Renormalization Group Analysis of the Small-World Network Model, 1999, e-print arXiv:cond-mat/9903357v1 [cond-mat.stat-mech].

[22] MOORE C, NEWMAN M E J. Epidemics and Percolation in Small-World Networks [J]. Phys Rev E, 2000, 61: 5678-5682.

[23] MOORE C, NEWMAN M E J. Exact Solution of Site and Bond Percolation on Small-World Networks [J]. Phys Rev E, 2000, 62: 7059-7064.

[24] ACIN A CIRAC J I, LEWENSTEIN M. Entanglement Percolation in Quantum Networks [J]. Nature Physics, 2007, 3: 256-259.

[25] MODLAWSKA J, GRUDKA A. Increasing Singlet Fraction with Entanglement Swapping [J]. Phys Rev A, 2008, 78: 032321-1-032321-5.

[26] BROADFOOT S, DORNER U, JAKSCH D. Entanglement Percolation with Bipartite Mixed States [J]. Europhys Lett, 2009, 88: 50002-1-50002-6.

[27] BROADFOOT S, DORNER U, JAKSCH D. Singlet Generation in Mixed-State Quantum Networks [J]. Phys Rev A, 2010, 81: 042316-1-042316-15.

[28] WU L, ZHU S. Entanglement Percolation on a Quantum Internet with Scale-Free and Clustering Characters [J]. Phys Rev A, 2011, 84: 052304-1-052304-5.

[29] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex Networks: Structure and Dynamics [J]. Phys Rep, 2006, 424: 175-308.

[30] POTTER A C, LEE P A. Multichannel Generalization of Kitaev’s Majorana End States and a Practical Route to Realize Them in Thin Films [J]. Phys Rev Lett, 2010, 105: 227003-1-227003-4.

[31] BARMPOUTIS D, MURRAY R M. Networks with the Smallest Average Distance and the Largest Average Clustering, 2010, e-print arXiv:1007.4031v1 [q-bio.MN].

[32] BARRAT A, WEIGT M. On the Properties of Small-World Network Models [J]. Eur Phys J B, 2000, 13: 547-560.

周磊, 吴亮, 朱士群. 小世界网络中的量子纠缠渗流[J]. 量子光学学报, 2012, 18(2): 136. ZHOU Lei, WU Liang, ZHU Shi-qun. Entanglement Percolation in Small-World Quantum Networks[J]. Acta Sinica Quantum Optica, 2012, 18(2): 136.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!