中国光学, 2011, 4 (4): 363, 网络出版: 2011-08-24   

亚波长金属光栅的表面等离子体激元共振特性

Resonant properties of sub-wavelength metallic gratings
作者单位
北京理工大学 光电学院, 北京 100081
摘要
亚波长金属光栅在共振波长处有光场局域增强、异常透射等现象, 为深入认识其共振机制, 本文研究了亚波长金属光栅的表面等离子体激元(SPP)共振特性。通过研究不同金属光栅的几何结构以及金属介电常数对SPP共振波长的影响, 获得了3种共振波长的基本物理机制。采用周期边界元法进行数值模拟, 在边界积分方程的基础上结合平面波展开方法来处理任意形状的周期性结构。模拟结果表明, 3种共振波长可以分别由金属的材料、金属光栅周期和金属光栅厚度所调谐。该研究为微纳米光学器件的设计提供了依据。
Abstract
Sub-wavelength metallic gratings have extraordinary transmission efficiency and local field enhancement in resonant wavelengths. In order to deeply understand the resonant discipline, the resonant origins of the sub-wavelength metallic gratings were investigated. Three resonant wavelengths were analyzed by adjusting the geometric parameters and materials of the gratings, and the physical disciplines of three different resonant wavelengths were obtained. In the simulation, the periodical boundary method based on the boundary integral equation combined with a plane wave expansion method was used to process the period structures with arbitrary shapes. The numerical results show that three resonant center wavelengths can be tuned by the materials, periods, and the thicknesses of the gratings. It is believed that this study will provide useful information for further designing micro-nano optical elements.
参考文献

[1] EBBESEN T W, LEZEC H J, GHAEMI H F, et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391:667-669.

[2] 顾本源. 表面等离子体亚波长光学原理和新颖效应[J]. 评述, 2007, 36(4):280-285.

    GU B Y. Surface plasmon subwavelength optics: principles and novel effects[J]. Comments, 2007, 36(4):280-285.(in Chinese)

[3] GARCIA-VIDAL F J, LEZEC H J, EBBESEN T W, et al. Multiple paths to enhance optical transmission through a single subwavelength slit[J]. Phys. Rev. Lett., 2003, 90(21):213901-1-213901-3.

[4] PORTO J A, GARCIA-VIDAL F J, PENDRY J B. Transmission resonances on metallic gratings with very narrow slits[J]. Phys. Rev. Lett., 1999, 83(14):2845-2848.

[5] YANG J, YANG C C, KIANG Y W. Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assited boundary integral equation method[J]. Opt. Express, 2007, 15(14):9048-9055.

[6] LIU J, XIE J H, WANG Y T. Transmission and diffraction through metallic nanoslit[J]. Modern Phys. Lett. B, 2008, 22(29):2821-2829.

[7] LIU J, XIE J H, WANG Y T. Transmission and diffraction through metallic nanoslit[J]. Modern Phys. Lett. B, 2008, 22(29):2821-2829.

[8] DI S, LIU J. Transmitted behavior of the light waves through horn-opened single nanoslit in finite width metallic films[J]. J. Opt. Soc. Am. B, 2007, 24(9):2349-2356.

[9] WANG SH Q, LIU J. Rigorous electromagnetic analysis of the common focusing characteristics of cylindrical microlens with long focal depth by multi-wavelength incidence[J]. J. Opt. Soc. Am. A, 2007, 24(2):512-516.

[10] CHEN K M. A mathematical formulation of the equivalence principle[J]. IEEE T. Microw Theory, 1989, 37(10):1576-1580.

[11] HU B, LIU J. Enhanced effect of local-fields in subwavelength metallic series nano-cavities from surface plasmon polaritons[J]. J. Opt. Soc. Am. A, 2007, 24(10):A1-A6.

[12] LIU J, HU B. Analysis of surface plasmons excitations from fabrication defects of metallicnanofilm with nonsymmetrical and finite grating-like corrugation[J]. Modern Phys. Lett. B, 2007, 21(25):1677-1685.

[13] PALIK E W. Handbook of Optical Constants of Solids[M]. San Diego:Academic Press, 1985.

[14] 谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性[J]. 物理学报, 2002, 51(5):1063-1066.

    TAN CH L, YI Y X, WANG G P. Optical transmission prorerties of one-dimensional metallic gratings[J]. Acta Physic Sinica, 1997, 2002, 51(5):1063-1066.(in Chinese)

[15] ASTILEAN S, LALANNE Ph, PALAMARU M. Light transmission through metallic channels much smaller than the wavelength[J]. Opt. Communication, 2000, 175(4-6): 265-273.

[16] LIU P, LIU J, LIU J, et al.. Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave[J]. Opt. Communications, 2011, 284(4):1076-1081.

[17] LIU J, WANG Y T, SUN F, et al.. Optical transmission through metallic nanoslit with symmetric or asymmetric surface-relief profile[J]. Optik, 2011, 122(9):782-786.

[18] 何启浩, 汪国平. 一维金属光栅的透射光增强效应的物理机制[J]. 激光杂志, 2003, 24(4):29-30.

    HE Q H, WANG G P. Phyxical mechanism for transmission echancement of one-dimensional metallic gratings[J]. Laser J., 2003, 24(4):29-30.(in Chinese)

[19] 白文理, 郭宝山, 蔡利康, 等. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究[J]. 物理学报, 2009, 58(11): 8021-8024.

    BAI W L, GUO B S, CAI L K, et al.. Simulation of light coupling enhancement and localization of transmission field via sub-wavelength metallic gratings[J]. Acta Physica Sinica, 2009, 58(11):8021-8024.(in Chinese)

[20] 张剑龙, 黄铭, 胡宝晶. 亚波长孔阵透射增强特性的FDTD数值仿真[J]. 云南大学学报, 2008, 30(5):472-476.

    ZHANG X L, HUANG M, HU B J. Simulation on light extraction efficiency of subwavelength hole array with FDTD method[J]. J. Yunan Unversity, 2008, 30(5):472-476.(in Chinese)

[21] 王亚伟, 刘明礼, 刘仁杰, 等. Fabry-Perot谐振腔对横电波激励下亚波长一维金属光栅的异常透射特性的作用[J]. 物理学报, 2011, 60(2):024217-1-024217-5.

    WANG Y W, LIU M L, LIU R J, et al.. Fabry-Perot resonance on extraordinary transmission through one-dimensional metallic gratings with sub-wavelength under transverse electric wave excitation[J]. Acta Phys. Sin., 2011, 60(2):024217-1-024217-5.(in Chinese)

[22] LINDBERG J, LINDFORS K, SETALA T, et al.. Spetral analysis of resonant transmission of light through a single sub-wavelength slit[J]. Op. Express, 2004, 12(4):623-626.

刘镜, 刘娟, 王涌天, 谢敬辉. 亚波长金属光栅的表面等离子体激元共振特性[J]. 中国光学, 2011, 4(4): 363. LIU Jing, LIU Juan, WANG Yong-tian, XIE Jing-hui. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics, 2011, 4(4): 363.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!