红外与激光工程, 2018, 47 (11): 1104001, 网络出版: 2019-01-10   

高速滑翔目标点源红外辐射特征模拟及可探测性分析

Infrared radiation characteristics and detectability analysis of point source based on high-speed sliding
作者单位
1 哈尔滨工业大学 工信部空天热物理重点实验室, 黑龙江 哈尔滨 150001
2 中国洛阳电子装备试验中心, 河南 洛阳 471003
摘要
文中对天基和地基两种观测平台下高超声速滑翔飞行器的点源红外可探测性进行了分析; 通过双温度模型的N-S方程和气固耦合模型获得流场参数和壁面温度, 并基于逐线法获得气体的物性参数; 基于视在光线法求解辐射传输方程来获得HTV-2飞行器的点源本征辐射特性, 并考虑大气透过率、背景以及路径辐射参数下计算不同平台的可探测性。结果表明: 目标的中长波辐射强度强烈依赖于本体辐射, 气体辐射可以忽略; 3~5 μm谱带内的本征辐射较8~12 μm高近一个量级; 在固定探测器灵敏度(10-12 W/cm2)下, 最大探测距离强烈依赖于波段和探测角度。3~5 μm谱带内地基和天基观测的理想最大探测距离分别为450 km和1 450 km, 8~12 μm谱带分别为300 km和550 km。
Abstract
Detection distances of the hypersonic aircraft based on a point source infrared detectability were predicted under the ground-based and space-based observation platforms. Two-temperature N-S equations were solved and the fluid-solid conjugation heat transfer technique were used for calculations of the surface temperature. Absorption coefficients of species were evaluated by the line-by-line method, and the radiative transfer equation was solved with the line-of-sight method to obtain intrinsic radiation characteristics of the HTV-2 type vehicle. The detectability of the two platforms was calculated considering the atmospheric transmittance, background and path radiation parameters. Results show that the radiation intensity of the target is determined by surface emissions comparing with the gas radiation. The intensity integrated within the 3-5 μm band is high nearly an order of magnitude than that within the 8-12 μm band. Under the condition of a constant sensitivity, the maximum detection range is strongly dependent on the spectral regions and observation angles. The maximum detection distances under ground-based and space-based stations are 450 km and 1 450 km for the 3-5 μm band, and 300 km and 550 km for the 8-12 μm band, respectively.
参考文献

[1] Walker S H, Sherk J, Shell D, et al. The DARPA/AF falcon program: the hypersonic technology vehicle# 2(HTV-2) flight demonstration phase[C]//15th AIAA International Space Planes and Hypersonic System and Technologies Conference, 2008.

[2] Blanchard R, Anderson B, Welch S, et al. Shuttle orbiter fuselage global yemperature measurements from infrared images at hypersonic speeds[C]//Atmospheric Flight Mechanics Confernce and Exhibit, 2013, 19(55): 153-170.

[3] Mahulkar S P, Songawane H R, Rao G A. Infrared signature studies of aerospace vehicles[J]. Progress in Aerospace Sciences, 2007, 43(7): 218-245.

[4] Ross M, Werner M, Mazuk S, et al. Infrared imagery of the space shuttle at hypersonic entry conditions[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008(1): 7-10.

[5] Horvath, Thomas J. Remote observations of reentering spacecraft including the space shuttle orbiter[C]//IEEE Aerospace Conference, 2013: 6497380.

[6] Schwartz R, Verstynen H, Gruber J, et al. Remote infrared imaging of the space shuttle during hypersonic flight: HYTHIRM mission operations and coordination[C]//42nd AIAA Thermophysics Conference, 2011: 27-30.

[7] Brandis A M, Johnston C O, Cruden B A, et al. Uncertainty analysis and validation of radiation measurements for earth reentry[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(2): 209-221.

[8] Ozawa T, Garrison M B, Levin D A. Accurate molecular and soot infrared radiation model for high-temperature flows[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(1): 19-27.

[9] Andrienko D A, Boyd I D. Kinetic models of oxygen thermochemistry based on quasi-classical trajectory analysis[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(1): T4968.

[10] Park C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244.

[11] Perrin M Y, Colonna G, D′Ammando G, et al. Radiation models and radiation transfer in hypersonics[J]. The Open Plasma Physics Journal, 2014, 7(1): 114-126.

[12] Gnoffo P A. Upwind-biased, point-implicit relaxation strategies for viscous, hypersonic flows[C]//9th Computational Fluid Dynamics Conference, 1989(6): 13-15.

[13] Shao C, Nie L, Chen W. Analysis of weakly ionized ablation plasma flows for a hypersonic vehicle[J]. Aerospace Science and Technology, 2016, 51: 151-161.

[14] Menter F R, Kunta M, Langtry R. Ten years of industrial experience with the SST turbulence model[J]. Heat and Mass Transfer, 2003, 4(1): 625-632.

[15] Surahikov S. Radiative gas dynamics of MSL at angle of attack[C]//54th AIAA Aerospace Sciences Meeting, 2016(1): 4-8.

[16] Willams F A. Combustion Theory[M]. 2nd ed. US: Benjamin/Cummings, Inc., 1985.

[17] Liu Y, Vinpkur M. Upwind algorithms for nonequilibrium flows[C]//27th AIAA Aerospace Sciences Meeting, 1989(1): 9-12.

[18] Nam H J, Kwon O J. Infrared radiation modeling of NO, OH, CO, H2O, and CO2 for emissivity/radiance prediction at high temperature[J]. Infrared Physics & Technology, 2014, (8): 001-003.

[19] Mu L, Ma Y, He Z, et al. Radiation characteristics simulation of non-equilibrium flow field around the hypersonic blunted cone[J]. Journal of Engineering Thermophysics, 2012, 33(11): 1958-1962.

[20] Rothman L, Gordon I, Barber R, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2139-2150.

[21] Niu Q, He Z, Dong S. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1367-1377.

[22] Ren K, Tian J, Gu G, et al. Operating distance calculation of ground-based and air-based infrared system based on Lowtran7[J]. Infrared Physics & Technology, 2016, 77(7): 414-420.

[23] Ferrero P, D′Ambrosio D. A numerical method for conjugate heat transfer problems in hypersonic flows[C]//40th Thermophysics Conference, 2008(6): 4247.

[24] Packan D, Laux C O, Gessman R J, et al. Measurement and modeling of OH, NO, and CO infrared radiation at 3 400 K[J]. Journal of Thermophysics and Heat Transfer, 2003, 17(4): 450-456.

[25] 甄华萍, 蒋崇文. 高超声速技术验证飞行器 HTV-2 综述[J]. 飞航导弹, 2013, 6(6): 7-13.

    Zhen Huaping, Jiang Chongwen. Review on hypersonic technology verification HTV-2 vehicle[J]. Winged Missile Journal, 2013, 6(6): 7-13. (in Chinese)

[26] Cheng H K. Perspectives on hypersonic viscous and nonequilibrium flow research[R]. NASA-CR-190817, 1992: 140151.

[27] Acton J M. Hypersonic boost-glide weapons[J]. Science & Global Security, 2015, 23(3): 191-192.

牛青林, 杨霄, 陈彪, 贺志宏, 刘连伟, 董士奎. 高速滑翔目标点源红外辐射特征模拟及可探测性分析[J]. 红外与激光工程, 2018, 47(11): 1104001. Niu Qinglin, Yang Xiao, Chen Biao, He Zhihong, Liu Lianwei, Dong Shikui. Infrared radiation characteristics and detectability analysis of point source based on high-speed sliding[J]. Infrared and Laser Engineering, 2018, 47(11): 1104001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!