光电工程, 2018, 45 (10): 170741, 网络出版: 2018-12-18   

45°倾斜光纤光栅波长可调谐调Q光纤激光器

Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating
作者单位
1 上海大学特种光纤与光接入网重点实验室,上海先进通信与数据科学研究院,上海大学特种光纤与先进通信国际合作联合实验室,上海 200444
2 华中科技大学光学与电子信息学院下一代互联网接入系统国家工程实验室,湖北 武汉 430074
摘要
本文提出了一种基于45°倾斜光纤光栅与带通滤波器的连续可调谐全光纤调Q 掺铒激光器,45°倾斜光纤光栅与其两侧的偏振控制器可以实现非线性偏振旋转效应,调Q 的产生则是因为非线性偏振旋转效应使环形腔中的激光产生强度依赖损耗从而导致脉冲压缩。在泵浦功率为655 mW 时,通过调节具有中心波长选择作用的带通滤波器,调Q 状态下可以实现光谱在1512 nm~1552 nm 范围内的连续可调,平均输出功率从0.282 mW 逐渐增加到4.884 mW,脉冲重复频率从23.7 kHz 逐渐增加到119.0 kHz。据我们所知,这是目前为止基于非线性偏振旋转效应与光谱带通滤波器实现的可调谐调Q 的光纤激光器中连续可调谐波长范围最宽的。
Abstract
A continuously tunable Q-switched all-fiber Er-doped laser based on a 45° tilted fiber grating and tunable bandpass filter is demonstrated. The 45° tilted fiber grating is used to achieve the nonlinear polarization rotation (NPR) along with two polarization controllers (PCs), Q-switching is realized due to the fact that the NPR effect in- duced intensity-dependent loss. Under the pump power of 655 mW, the Q-switched optical spectrum can be continuously tuned from 1512 nm to 1552 nm by simply rotating the tunable bandpass filter. During the wavelength tuning process, the average output power increases from 0.282 mW to 4.884 mW while the repetition rate enhances from 27.3 kHz to 119 kHz. To the best of our knowledge, this is the widest continuously tunable range of Q-switched fiber Lasers based on nonlinear polarization rotation effect and spectral bandpass filter.
参考文献

[1] Mears R J, Reekie L, Poole S B, et al. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55μm[J]. Electronics Letters, 1986, 22(3): 159–160.

[2] Luo Z Q, Liu C, Huang Y Z, et al. Topological-insulator passively Q-switched double-clad fiber laser at 2μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1–8.

[3] Wang L, Gao C Q, Gao M W, et al. A resonantly-pumped tunable Q-switched Ho: YAG ceramic laser with diffraction-limit beam quality[J]. Optics Express, 2014, 22(1): 254–261.

[4] Sharma U, Kim C S, Kang J U, et al. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications[ C]//Proceedings of 2004 Laser Applications to Chemical and Environmental Analysis, Annapolis, Maryland United States, 2004: 1277–1279.

[5] Chernikov S V, Zhu Y, Taylor J R, et al. Supercontinuum self-Q-switched ytterbium fiber laser[J]. Optics Letters, 1997, 22(5): 298–300.

[6] Dong B, Hao J Z, Hu J H, et al. Wide pulse-repetition-rate range tunable nanotube Q-switched low threshold erbium- doped fiber laser[J]. IEEE Photonics Technology Letters, 2010, 22(24): 1853–1855.

[7] Pérez-Millán P, Cruz J L, Andrés M V. Active Q-switched distributed feedback erbium-doped fiber lasers[J]. Applied Physics Letters, 2005, 87(1): 011104.

[8] Delgado-Pinar M, Díez A, Cruz J L, et al. Single-frequency active Q-switched distributed fiber laser using acoustic waves[J]. Applied Physics Letters, 2007, 90(17): 171110.

[9] Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435–453.

[10] Li J F, Hudson D D, Liu Y, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 2012, 37(18): 3747–3749.

[11] Filippov V N, Starodumov A N, Kir’yanov A V. All-fiber passively Q-switched low-threshold erbium laser[J]. Optics Letters, 2001, 26(6): 343–345.

[12] Laroche M, Chardon A M, Nilsson J, et al. Compact diode- pumped passively Q-switched tunable Er–Yb double-clad fiber laser[J]. Optics Letters, 2002, 27(22): 1980–1982.

[13] Zhou D P, Wei L, Dong B, et al. Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber[J]. IEEE Photonics Technology Letters, 2010, 22(1): 9–11.

[14] Cao W J, Wang H Y, Luo A P, et al. Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser[J]. Laser Physics Letters, 2011, 9(1): 54–58.

[15] Luo Z C, Liu J R, Wang H Y, et al. Wide-band tunable passively Q-switched all-fiber ring laser based on nonlinear polarization rotation technique[J]. Laser Physics, 2012, 22(1): 203–206.

[16] Wang T X, Yan Z J, Mou C B, et al. Stable nanosecond passively Q-switched all-fiber erbium-doped laser with a 45° tilted fiber grating[J]. Applied Optics, 2017, 56(12): 3583–3588.

[17] Yan Z J, Mou C B, Zhou K M, et al. UV-inscription, polarization- dependant loss characteristics and applications of 45° tilted fiber gratings[J]. Journal of Lightwave Technology, 2011, 29(18): 2715–2724.

[18] Yan Z J, Mou C B, Wang H S, et al. All-fiber polarization interference filters based on 45°-tilted fiber gratings[J]. Optics Letters, 2012, 37(3): 353–355.

[19] Zhou K M, Cheng X F, Yan Z J, et al. Optical Spectrum Analyzer using a 45° tilted fiber grating[C]//Proceedings of 2012 Advanced Photonics Congress, Colorado Springs, Colorado, United States, 2012: BW2E. 7.

[20] Yan Z J, Mou C B, Sun Z Y, et al. Hybrid tilted fiber grating based refractive index and liquid level sensing system[J]. Optics Communications, 2015, 351: 144–148.

[21] Zhou K M, Simpson G, Chen X F, et al. High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings[J]. Optics Letters, 2005, 30(11): 1285–1287.

[22] Renaud C C, Selvas-Aguilar R J, Nilsson J, et al. Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm[J]. IEEE Photonics Technology Letters, 1999, 11(8): 976–978.

[23] Fan Y X, Lu F Y, Hu S L, et al. Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser[J]. Optics Letters, 2004, 29(7): 724–726.

[24] Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7): 073106.

[25] Chen Y, Zhao C J, Chen S Q, et al. Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 315–322.

[26] Huang Y Z, Luo Z Q, Li Y Y, et al. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber[J]. Optics Express, 2014, 22(21): 25258–25266.

[27] Woodward R I, Kelleher E J R, Howe R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113–31122.

[28] Mou C B, Zhou K M, Zhang L, et al. Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser[J]. Journal of the Optical Society of America B, 2009, 26(10): 1905–1911.

[29] H nninger C, Paschotta R , Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B, 1999, 16(1): 46–56.

胡啸林, 闫志君, 黄千千, 邹传杭, 王天行, 牟成博. 45°倾斜光纤光栅波长可调谐调Q光纤激光器[J]. 光电工程, 2018, 45(10): 170741. Hu Xiaolin, Yan Zhijun, Huang Qianqian, Zou Chuanhang, Wang Tianxing, Mou Chengbo. Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating[J]. Opto-Electronic Engineering, 2018, 45(10): 170741.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!