光学学报, 2012, 32 (8): 0806001, 网络出版: 2012-06-19   

光子晶体光纤色散极值特性的研究

Study on the Extreme Characteristics of Dispersion of Photonic Crystal Fiber
作者单位
1 大连理工大学物理与光电工程学院, 辽宁 大连 116024
2 大连民族学院物理与材料工程学院, 辽宁 大连 116600
摘要
采用全矢量有效折射率法计算光子晶体光纤的色散系数,深入分析了光子晶体光纤色散系数与结构参数之间的关系,发现色散系数随着结构参数的变化具有双极值特性:1)当Λ值保持不变时,随着d/Λ值的减小,零色散波长向长波方向移动,在达到极大值后,则转向短波方向移动,例如当Λ=2.3 μm时,极大零色散波长出现在约d/Λ=0.24处,约为1728.9 nm,当Λ取不同值时,较小的Λ值,会对应有较大的极大零色散波长;2) 当d/Λ值保持不变时,随着Λ值的减小,零色散波长向短波方向移动,在达到极小值后,则转向长波方向移动,例如当d/Λ=0.9时,极小零色散波长出现在约Λ=0.6 μm处,约为564.29 nm,当d/Λ取不同值时,该比值越大,则会对应着越小的极小零色散波长。这一发现对于优化设计特种光子晶体光纤具有一定的价值。
Abstract
With a fully vectorial effective index method, the total dispersion coefficient of photonic crystal fiber is calculated, and it is deeply analyzed that how the total dispersion coefficient is affected by the structural parameters. It is found that the dispersion coefficient has two-extreme characteristics with the changes of structural parameters. 1) When Λ is unchanged, with the reduction of d/Λ, the zero-dispersion wavelength (ZDW) moves to the long wavelength. After reaching the maximum ZDW (MZDW), instead, the ZDW moves to the short wavelength. For example, when Λ=2.3 μm, the MZDW is about 1728.9 nm, as d/Λ=0.24, and the smaller Λ has the longer MZDW than the larger. 2) When d/Λ is unchanged, with the reduction of Λ, the ZDW moves to the short wavelength. After reaching the minimum ZDW (M-ZDW), the ZDW moves to the long wavelength. For example, when d/Λ=0.9, the M-ZDW is about 564.29 nm, as Λ=0.6 μm, and the larger d/Λ has the shorter M-ZDW than the smaller. These discoveries could be used to optimize design of the special photonic crystal fiber.
参考文献

[1] J. C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549

[2] A. Peyrilloux, T. Chartier, A. Hideur et al.. Theoretical and experimental study of the birefringence of a photonic crystal fiber[J]. J. Lightwave Technol., 2003, 21(2): 536~539

[3] 王子涵, 栗岩锋, 胡明列 等. 800 nm附近具有平坦色散的光子晶体光纤的计算与设计[J]. 量子电子学报, 2005, 22(5): 771~776

    Wang Zihan, Li Yanfeng, Hu Minglie et al.. Calculation and design of photonic crystal fiber with flattened dispersion at 800 nm[J]. Chin. J. Quant. Electron., 2005, 22(5): 771~776

[4] S. Haxha, H. Ademgil. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area[J]. Opt. Commun., 2008, 281(2): 278~286

[5] 李羽赫, 范万德, 盛秋琴. 双芯准晶格光子晶体光纤的色散特性[J]. 中国激光, 2011, 38(2): 0205005

    Li Yuhe, Fan Wande, Sheng Qiuqin. Dsipersion properties of dual-core photonic crystal fiber with quasi-lattice[J]. Chinese J. Lasers, 2011, 38(2): 0205005

[6] Y. Li, C. wang, Y. Peng et al.. Application of effective index method to higher order modes of photonic crystal fibers[J]. Microwave & Opt. Technol., 2007, 49(3): 567~570

[7] 王丹, 郑义. 双包层色散平坦光子晶体光纤的数值模拟与分析[J]. 光学学报, 2011, 31(8): 0806010

    Wang Dan, Zheng Yi. Numerical simulation and analysis of double cladding photonics crystal fiber with flattened dispersion[J]. Acta Optica Sinica, 2011, 31(8): 0806010

[8] Z. Liu, X. Liu, S. Li et al.. A broadband ultra flattened chromatic dispersion microstructured fiber for optical communications[J]. Opt. Commun., 2007, 272(1): 92~96

[9] 郝志坚, 赵楚军, 文建国 等. 具有三个零色散波长的光子晶体光纤中色散波孤子的产生[J]. 光学学报, 2011, 31(10): 1006003

    Hao Zhijian, ZhaoChujun, Wen Jianguo et al.. Dispersive-wave soliton generation in photonic crystal fiber with three zero-dispersion wavelengths[J]. Acta Optica Sinica, 2011, 31(10): 1006003

[10] Z. Xu, K. Duan, Z. Liu et al.. Numerial analyses of splice losses of photonic crystal fibers[J]. Opt. Commun., 2009, 282(23): 4527~4531

[11] M. Aliramezani, S. M. Nejad. Numerical analysis and optimization of a dual-concentric-core photonic crystal fiber for broadband dispersion compensation[J]. Opt. & Laser Technol., 2010, 42(8): 1209~1217

[12] 侯宇, 周桂耀, 侯蓝田 等. 八边形双包层光子晶体光纤色散特性分析[J]. 中国激光, 2010, 37(4): 1068~1072

    Hou Yu, Zhou Guiyao, Hou Lantian et al.. Analysis of dispersion properties of octagonal structural photonic crystal fiber with double cladding[J]. Chinese J. Lasers, 2010, 37(4): 1068~1072

[13] M. Midrio, M. P. Singh, C. G. Someda. The space filling mode of holey fibers: an analytical vectorial solution[J]. J. Lightwave Technol., 2000, 18(7): 1031~1037

[14] Y. Li, C. Wang, M. Hu. A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation[J]. Opt. Commun., 2004, 238(1-3): 29~33

[15] K. Imamura, K. Mukasa, R. Sugizaki et al.. Design optimization of holey fibers to realize zero dispersion in 500 nm band and suppressed higher-order modes propagation[C]. IEEE/LEOS Winter Topical Meeting, 2008, 160~161

关寿华, 于清旭, 郑建洲. 光子晶体光纤色散极值特性的研究[J]. 光学学报, 2012, 32(8): 0806001. Guan Shouhua, Yu Qingxu, Zheng Jianzhou. Study on the Extreme Characteristics of Dispersion of Photonic Crystal Fiber[J]. Acta Optica Sinica, 2012, 32(8): 0806001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!