Photonics Research, 2019, 7 (11): 11001296, Published Online: Oct. 30, 2019  

Interference-enhanced optical magnetism in surface high-index resonators: a pathway toward high-performance ultracompact linear and nonlinear meta-optics Download: 502次

Author Affiliations
1 Department of Electrical Engineering and Center for Nanoscale Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
2 e-mail: lzk12@psu.edu
3 e-mail: dhw@psu.edu
Copy Citation Text

Lei Kang, Huaguang Bao, Douglas H. Werner. Interference-enhanced optical magnetism in surface high-index resonators: a pathway toward high-performance ultracompact linear and nonlinear meta-optics[J]. Photonics Research, 2019, 7(11): 11001296.

References

[1] V. M. Shalaev. Optical negative-index metamaterials. Nat. Photonics, 2007, 1: 41-48.

[2] C. M. Soukoulis, M. Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics, 2011, 5: 523-530.

[3] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 1999, 47: 2075-2084.

[4] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977-980.

[5] M. W. Klein, C. Enkrich, M. Wegener, S. Linden. Second-harmonic generation from magnetic metamaterials. Science, 2006, 313: 502-504.

[6] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325: 1513-1515.

[7] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85: 3966-3969.

[8] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 2000, 84: 4184-4187.

[9] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang. Terahertz magnetic response from artificial materials. Science, 2004, 303: 1494-1496.

[10] Q. Zhao, J. Zhou, F. Zhang, D. Lippens. Mie resonance-based dielectric metamaterials. Mater. Today, 2009, 12: 60-69.

[11] Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, L. Li. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett., 2008, 101: 027402.

[12] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 2016, 79: 076401.

[13] X. Luo. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron., 2015, 58: 594201.

[14] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 2016, 354: aag2472.

[15] S. Kruk, Y. Kivshar. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photon., 2017, 4: 2638-2649.

[16] Y. Kivshar. All-dielectric meta-optics and non-linear nanophotonics. Natl. Sci. Rev., 2018, 5: 144-158.

[17] Q. Zhao, Z. Xiao, F. Zhang, J. Ma, M. Qiao, Y. Meng, C. Lan, B. Li, J. Zhou, P. Zhang, N.-H. Shen, T. Koschny, C. M. Soukoulis. Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices. Adv. Mater., 2015, 27: 6187-6194.

[18] Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk. Directional visible light scattering by silicon nanoparticles. Nat. Commun., 2013, 4: 1527.

[19] S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett., 2013, 13: 1806-1809.

[20] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, 2013, 7: 7824-7832.

[21] X. Luo, D. Tsai, M. Gu, M. Hong. Subwavelength interference of light on structured surfaces. Adv. Opt. Photon., 2018, 10: 757-842.

[22] S. Fan, J. D. Joannopoulos. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B, 2002, 65: 235112.

[23] C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Observation of trapped light within the radiation continuum. Nature, 2013, 499: 188-191.

[24] H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, W. Zhou. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photonics, 2012, 6: 615-620.

[25] J. R. Piper, S. Fan. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photon., 2014, 1: 347-353.

[26] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 2010, 10: 2342-2348.

[27] L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, W. Cai. Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror. Nano Lett., 2017, 17: 7102-7109.

[28] L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, W. Cai. Electrifying photonic metamaterials for tunable nonlinear optics. Nat. Commun., 2014, 5: 4680.

[29] L. Liu, L. Kang, T. S. Mayer, D. H. Werner. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun., 2016, 7: 13236.

[30] H. Sugimoto, M. Fujii. Broadband dielectric-metal hybrid nanoantenna: silicon nanoparticle on a mirror. ACS Photon., 2018, 5: 1986-1993.

[31] F. Deng, H. Liu, S. Lan. Metal substrate-induced line width compression in the magnetic dipole resonance of a silicon nanosphere illuminated by a focused azimuthally polarized beam. Nanoscale Res. Lett., 2018, 13: 395.

[32] F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. Di Porto, A. J. Agranat, E. DelRe. Giant broadband refraction in the visible in a ferroelectric perovskite. Nat. Photonics, 2018, 12: 734-738.

[33] M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, M. L. Brongersma. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol., 2014, 9: 542-547.

[34] S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, I. Brener. Optical magnetic mirrors without metals. Optica, 2014, 1: 250-256.

[35] Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, M. Hong. Terahertz all-dielectric magnetic mirror metasurfaces. ACS Photon., 2016, 3: 1010-1018.

[36] X. Liu, Q. Zhao, C. Lan, J. Zhou. Isotropic Mie resonance-based metamaterial perfect absorber. Appl. Phys. Lett., 2013, 103: 031910.

[37] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 2012, 12: 1443-1447.

[38] G. Della Valle, B. Hopkins, L. Ganzer, T. Stoll, M. Rahmani, S. Longhi, Y. S. Kivshar, C. De Angelis, D. N. Neshev, G. Cerullo. Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics. ACS Photon., 2017, 4: 2129-2136.

[39] M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, Y. S. Kivshar. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 2015, 15: 6985-6990.

[40] Y. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 2014, 5: 5753.

[41] Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, J. Valentine. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 2015, 15: 7388-7393.

[42] M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, Y. S. Kivshar. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater., 2017, 27: 1700580.

[43] D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, P. A. Belov. Nonlinear transient dynamics of photoexcited resonant silicon nanostructures. ACS Photon., 2016, 3: 1546-1551.

[44] P. Lalanne, J. P. Hugonin, J. C. Rodier. Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett., 2005, 95: 263902.

[45] F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, A. Dereux. Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys., 2007, 3: 324-328.

[46] J. Chen, Z. Li, S. Yue, Q. Gong. Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett., 2011, 11: 2933-2937.

[47] A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, S. I. Bozhevolnyi. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl., 2014, 3: e197.

[48] Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, X. Zhang. Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett., 2012, 12: 4853-4858.

[49] Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, A. Faraon. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photon., 2018, 5: 1711-1717.

[50] S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, E. Ubyivovk, D. A. Smirnova, S. Starikov, B. N. Chichkov, Y. S. Kivshar. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett., 2017, 17: 3047-3053.

[51] S. Chen, M. Rahmani, K. F. Li, A. Miroshnichenko, T. Zentgraf, G. Li, D. Neshev, S. Zhang. Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces. ACS Photon., 2018, 5: 1671-1675.

[52] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, A. I. Kuznetsov. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 2018, 13: 1042-1047.

[53] L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, Y. Kivshar. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett., 2018, 18: 3978-3984.

Lei Kang, Huaguang Bao, Douglas H. Werner. Interference-enhanced optical magnetism in surface high-index resonators: a pathway toward high-performance ultracompact linear and nonlinear meta-optics[J]. Photonics Research, 2019, 7(11): 11001296.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!