强激光与粒子束, 2017, 29 (5): 056007, 网络出版: 2017-05-04  

基于Geant4的反应堆临界及动态计算方法

Study of reactor criticality and kinetics calculation methods based on Geant4
作者单位
1 中国原子能科学研究院 反应堆工程研究设计所, 北京 102413
2 中国科学技术大学 近代物理系, 合肥 230026
3 中国科学技术大学 核探测与核电子学国家重点实验室, 合肥 230026
4 北京市辐射安全技术中心, 北京 100089
摘要
Geant4是一款基于C++面向对象技术的蒙特卡罗开发程序包,可以模拟各种已知粒子与物质之间的相互作用。然而该程序包没有提供临界源功能,无法直接用于反应堆物理计算。因此,利用Geant4提供的基础物理模型和粒子跟踪控制等功能,用两种不同方法实现了临界源的设置,实现了基于Geant4的反应堆静态计算程序G4-RSM和反应堆动态计算程序G4-RDM。两个程序均可用于反应堆临界计算,与MCNP计算结果相对误差在5%以内。G4-RDM程序除可用于临界计算外,还可用于模拟堆内事故工况下的中子学瞬态变化。
Abstract
Geant4 is a Monte Carlo simulation program toolkit based on C++ object-oriented technique. The toolkit can simulate various interactions between particles and medium materials and has been widely applied in high energy physics, accelerator physics, etc. However, because of the lack of critical source function, Geant4 cannot be used directly in reactor physics. Using physics models and particle tracking and control functions provided by Geant4, we implemented criticality calculation in two ways and developed Geant4-based static reactor simulation code G4-RSM and dynamic reactor simulation code G4-RDM. Both codes can be used for criticality simulation and the relative errors are within 5% compared with MCNP. Except for criticality simulation, G4-RDM can be used to simulate neutron characteristics in reactor accident conditions.
参考文献

[1] 徐琪.堆用蒙卡程序RMC物理瞬态计算方法及异构并行研究[D].北京: 清华大学, 2014. (Xu Qi. Research on kinetics simulation and heterogeneous parallelization with reactor Monte Carlo code RMC. Beijing: Tsinghua University, 2014)

[2] X-5 Monte Carlo Team. MCNP-A general Monte Carlo n-particle transport code[R].LA-UR-03-1987, 2003.

[3] Petrie L M, Cross N F. KENO IV-An improved Monte Carlo criticality program[R].ORNL-4938, Oak Ridge National Laboratory, 1975.

[4] 丘意书, 佘顶, 李瑞, 等. 堆用蒙特卡罗程序RMC的全堆计算研究[J].核动力工程, 2013, 34(s1): 1-4. (Qiu Yishu, She Ding, Li Rui, et al. Analysis of full-core calculation of RMC. Nuclear Power Laser Engineering, 2013, 34(s1): 1-4)

[5] 宋婧, 孙光耀, 陈珍平, 等. 蒙特卡罗有效增殖因子计算方法研究[J].核科学与工程, 2015, 35(2): 241-245. (Song Jing, Sun Guangyao, Chen Zhenping, et al. Study on Monte Carlo K-effective calculation method. Nuclear Science and Engineering, 2015, 35(2): 241-245)

[6] 李刚, 张宝印, 李瑞, 等. JMCT连续能量点截面物理模块设计与实现[J].原子能科学技术, 2013, 47(sl): 453-457.(Li Gang, Zhang Baoyin, Li Rui, et al. Design and implementation of point wise continuous energy cross section physics module of JMCT code. Atomic Energy Science and Engineering, 2013, 47(sl): 453-457)

[7] Shen Huayun, Wang Kan. Direct simulation method for transient three-dimensional neutron transport[J].Transactions of the American Nuclear Society, 2007, 97: 658-659.

[8] 邓力, 胡泽华, 李刚, 等. 三维中子-光子输运的蒙特卡罗程序MCMG[J].强激光与粒子束, 2013, 25(1): 163-168.(Deng Li, Hu Zehua, Li Gang, et al. 3D Monte Carlo neutron and photon transport code MCMG. High Power Laser and Particle Beams, 2013, 25(1): 163-168)

[9] 叶沿林,应军, 陈陶.高能物理与核物理领域面向对象软件技术的发展[J].原子核物理评论, 1997, 14(2): 125-129. (Ye Yanlin, Ying Jun, Chen Tao. Development of object-oriented software technique in field of high energy and nuclear physics. Nuclear Physics Review, 1997, 14(2): 125-129)

[10] Agostinelli S, Allison J, Amako K, et al. Geant4-a simulation toolkit[J].Nucl Instrum Meth Phys Res Sect A, 2003,506(3): 250-303.

[11] Russell L, Buijs A, Jonkmans G. G4-STORK: A Geant4-based Monte Carlo reactor kinetics simulation code[J].Annals of Nuclear Energy, 2014, 71: 451-461.

孙世乔, 潘子文, 李梦珂, 周一东. 基于Geant4的反应堆临界及动态计算方法[J]. 强激光与粒子束, 2017, 29(5): 056007. Sun Shiqiao, Pan Ziwen, Li Mengke, Zhou Yidong. Study of reactor criticality and kinetics calculation methods based on Geant4[J]. High Power Laser and Particle Beams, 2017, 29(5): 056007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!