中国激光, 2017, 44 (1): 0102001, 网络出版: 2017-01-10   

单光束飞秒激光诱导玻璃内部纳米光栅机理及应用研究进展 下载: 3235次

Research Progresson Single Femtosecond Laser Induced Nanogratings in Glass: Fundamentals and Applications
作者单位
1 浙江大学材料科学与工程学院, 浙江 杭州 310027
2 华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640
3 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
引用该论文

王珏晨, 张芳腾, 邱建荣. 单光束飞秒激光诱导玻璃内部纳米光栅机理及应用研究进展[J]. 中国激光, 2017, 44(1): 0102001.

Wang Juechen, Zhang Fangteng, Qiu Jianrong. Research Progresson Single Femtosecond Laser Induced Nanogratings in Glass: Fundamentals and Applications[J]. Chinese Journal of Lasers, 2017, 44(1): 0102001.

参考文献

[1] Assion A, Baumert T, Bergt M. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses[J]. Science, 1998, 282(5390): 919-922.

[2] Meshulach D, Silberberg Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse[J]. Nature, 1998, 396(6708): 239-242.

[3] Juhasz T, Loesel F H, Kurtz R M. et al. Corneal refractive surgery with femtosecond lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 902-910.

[4] Tan D, Sharafudeen K N, Yue Y. et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Progress in Materials Science, 2016, 76: 154-228.

[5] Davis K M, Miura K, Sugimoto N. et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

[6] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

[7] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 1997, 71(7): 882-884.

[8] Glezer E N, Milosavljevic M, Huang L. et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025.

[9] Sudrie L, Franco M, Prade B. et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 1999, 171(4): 279-284.

[10] Mills J D, Kazansky P G, Bricchi E. et al. Embedded anisotropic microreflectors by femtosecond-laser nanomachining[J]. Applied Physics Letters, 2002, 81(2): 196-198.

[11] Shimotsuma Y, Kazansky P G, Qiu J. et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405.

[12] Hnatovsky C, Taylor R S, Simova E. et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica[J]. Optics Letters, 2005, 30(14): 1867-1869.

[13] Taylor R S, Hnatovsky C, Simova E. et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass[J]. Optics Letters, 2007, 32(19): 2888-2890.

[14] 戴晔, 邱建荣. 单光束飞秒激光诱导石英玻璃内部纳米光栅的研究进展[J]. 激光与光电子学进展, 2013, 50(12): 120002.

    Dai Ye, Qiu Jianrong. Research progress of single beam femtosecond laser direct writing self-organized nanogratings in fused silica[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120002.

[15] Kazansky P G, Inouye H, Mitsuyu T. et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 1999, 82(10): 2199.

[16] Qiu J, Kazanski P G, Si J. et al. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass[J]. Applied Physics Letters, 2000, 77(13): 1940-1942.

[17] Qiu J, Hirao K. Polarization dependent emission in silica glass[J]. O plus E, 2002, 77: 1-2.

[18] Hnatovsky C, Taylor R S, Simova E. et al. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching[J]. Applied Physics A, 2006, 84(1-2): 47-61.

[19] Bhardwaj V R, Simova E, Rajeev P P. et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Physical Review Letters, 2006, 96(5): 057404.

[20] Hnatovsky C, Taylor R S, Rajeev P P. et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica[J]. Applied Physics Letters, 2005, 87(1): 014104.

[21] Sudrie L, Couairon A, Franco M. et al. Femtosecond laser-induced damage and filamentary propagation in fused silica[J]. Physical Review Letters, 2002, 89(18): 186601.

[22] Couairon A, Sudrie L, Franco M. et al. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Physical Review B, 2005, 71(12): 125435.

[23] Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass[J]. Applied Physics Letters, 2006, 88(11): 111119.

[24] Bricchi E, Klappauf B G, Kazansky P G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials[J]. Optics Letters, 2004, 29(1): 119-121.

[25] Lancry M, Poumellec B, Canning J. et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation[J]. Laser & Photonics Reviews, 2013, 7(6): 953-962.

[26] Richter S, Heinrich M, Döring S. et al. Nanogratings in fused silica: Formation, control, and applications[J]. Journal of Laser Applications, 2012, 24(4): 042008.

[27] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser & Photonics Reviews, 2008, 2(1-2): 26-46.

[28] Gecevicius M, Beresna M, Zhang J. et al. Extraordinary anisotropy of ultrafast laser writing in glass[J]. Optics Express, 2013, 21(4): 3959-3968.

[29] Rajeev P P, Gertsvolf M, Simova E. et al. Memory in nonlinear ionization of transparent solids[J]. Physical Review Letters, 2006, 97(25): 253001.

[30] Richter S, Jia F, Heinrich M. et al. The role of self-trapped excitons and defects in the formation of nanogratings in fused silica[J]. Optics Letters, 2012, 37(4): 482-484.

[31] Liao Y, Zeng B, Qiao L. et al. Threshold effect in femtosecond laser induced nanograting formation in glass: Influence of the pulse duration[J]. Applied Physics A, 2014, 114(1): 223-230.

[32] Eaton S, Zhang H, Herman P. et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express, 2005, 13(12): 4708-4716.

[33] Richter S, Heinrich M, Döring S. et al. Formation of femtosecond laser-induced nanogratings at high repetition rates[J]. Applied Physics A, 2011, 104(2): 503-507.

[34] Shimotsuma Y, Sakakura M, Kazansky P G. et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 2010, 22(36): 4039-4043.

[35] Liao Y, Pan W, Cui Y. et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation[J]. Optics Letters, 2015, 40(15): 3623-3626.

[36] Kazansky P G, Yang W, Bricchi E. et al. "Quill" writing with ultrashort light pulses in transparent materials[J]. Applied Physics Letters, 2007, 90(15): 151120.

[37] Yang W, Kazansky P G, Shimotsuma Y. et al. Ultrashort-pulse laser calligraphy[J]. Applied Physics Letters, 2008, 93(17): 171109.

[38] Zhang F, Yu Y, Cheng C. et al. Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser[J]. Optics Letters, 2013, 38(13): 2212-2214.

[39] Shimotsuma Y, Hirao K, Qiu J. et al. Nano-modification inside transparent materials by femtosecond laser single beam[J]. Modern Physics Letters B, 2005, 19(05): 225-238.

[40] Wortmann D, Gottmann J, Brandt N. et al. Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching[J]. Optics Express, 2008, 16(3): 1517-1522.

[41] Richter S, Miese C, Döring S. et al. Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE TM[J]. Optical Materials Express, 2013, 3(8): 1161-1166.

[42] Zimmermann F, Plech A, Richter S. et al. Ultrashort laser pulse induced nanogratings in borosilicate glass[J]. Applied Physics Letters, 2014, 104(21): 211107.

[43] Richter S, Möncke D, Zimmermann F. et al. Ultrashort pulse induced modifications in ULE-from nanograting formation to laser darkening[J]. Optical Materials Express, 2015, 5(8): 1834-1850.

[44] Liao Y, Shen Y, Qiao L. et al. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes[J]. Optics Letters, 2013, 38(2): 187-189.

[45] Liao Y, Cheng Y, Liu C. et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration[J]. Lab on a Chip, 2013, 13(8): 1626-1631.

[46] Umran F A, Liao Y, Elias M M. et al. Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation[J]. Optics Express, 2013, 21(13): 15259-15267.

[47] Zhang F, Zhang H, Dong G. et al. Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing[J]. Journal of the Optical Society of America B, 2014, 31(4): 860-864.

[48] Shimotsuma Y, Asai T, Sakakura M. et al. Femtosecond-laser nanostructuring in glass[J]. Journal of Laser Micro Nanoengineering, 2014, 9(1): 31.

[49] Asai T, Shimotsuma Y, Kurita T. et al. Systematic control of structural changes in GeO2 glass induced by femtosecond laser direct writing[J]. Journal of the American Ceramic Society, 2015, 98(5): 1471-1477.

[50] Cao J, Mazerolles L, Lancry M. et al. Form birefringence induced in multicomponent glass by femtosecond laser direct writing[J]. Optics Letters, 2016, 41(12): 2739-2742.

[51] Zimmermann F, Lancry M, Plech A. et al. Femtosecond laser written nanostructures in Ge-doped glasses[J]. Optics Letters, 2016, 41(6): 1161-1164.

[52] Fedotov S S, Drevinskas R, Lotarev S V. et al. Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass[J]. Applied Physics Letters, 2016, 108(7): 071905.

[53] Buschlinger R, Nolte S, Peschel U. Self-organized pattern formation in laser-induced multiphoton ionization[J]. Physical Review B, 2014, 89(18): 184306.

[54] Beresna M, Gecevicius M, Kazansky P G. et al. Exciton mediated self-organization in glass driven by ultrashort light pulses[J]. Applied Physics Letters, 2012, 101(5): 053120.

[55] MisawaH, JuodkazisS. 3D laser microfabrication: Principles and applications[M]. New York: John Wiley & Sons, 2006.

[56] Dai Y, Wu G, Lin X. et al. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica[J]. Optics Express, 2012, 20(16): 18072-18078.

[57] Dai Y, Ye J, Gong M. et al. Forced rotation of nanograting in glass by pulse-front tilted femtosecond laser direct writing[J]. Optics Express, 2014, 22(23): 28500-28505.

[58] Liao Y, Ni J, Qiao L. et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation[J]. Optica, 2015, 2(4): 329-334.

[59] Liang F, Bouchard J, Chin S L. et al. Defect-assisted local field rearrangement during nanograting formation with femtosecond pulses[J]. Applied Physics Letters, 2015, 107(6): 061903.

[60] Rudenko A, Colombier J P, Itina T E. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser[J]. Physical Review B, 2016, 93(7): 075427.

[61] Zimmermann F, Plech A, Richter S. et al. The onset of ultrashort pulse-induced nanogratings[J]. Laser & Photonics Reviews, 2016, 10(2): 327-334.

[62] ManzA, BeckerH. Microsystem technology in chemistry and life sciences[M]. [s. l.]: Springer Science & Business Media, 2003.

[63] Yu X, Liao Y, He F. et al. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses[J]. Journal of Applied Physics, 2011, 109(5): 053114.

[64] Zimmermann F, Plech A, Richter S. et al. On the rewriting of ultrashort pulse-induced nanogratings[J]. Optics Letters, 2015, 40(9): 2049-2052.

[65] Zhang J, Gecevicius M, Beresna M. et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 2014, 112(3): 033901.

[66] Miura K, Qiu J, Fujiwara S. et al. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions[J]. Applied Physics Letters, 2002, 80(13): 2263-2265.

[67] Chon J W M, Bullen C, Zijlstra P, et al. Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage[J]. Advanced Functional Materials, 2007, 17(6): 875-880.

[68] Bricchi E, Mills J D, Kazansky P G. et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining[J]. Optics Letters, 2002, 27(24): 2200-2202.

[69] Ramirez L P R, Heinrich M, Richter S, et al. Tuning the structural properties of femtosecond-laser-induced nanogratings[J]. Applied Physics A, 2010, 100(1): 1-6.

[70] Cai W, Libertun A R, Piestun R. Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings[J]. Optics Express, 2006, 14(9): 3785-3791.

[71] Cheng G, Mishchik K, Mauclair C. et al. Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass[J]. Optics Express, 2009, 17(12): 9515-9525.

[72] Fernandes L A, Grenier J R, Herman P R. et al. Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits[J]. Optics Express, 2011, 19(19): 18294-18301.

[73] Beresna M, Kazansky P G. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass[J]. Optics Letters, 2010, 35(10): 1662-1664.

[74] Beresna M, Gecevicius M, Kazansky P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4): 783-795.

[75] Beresna M, Gecevicius M, Kazansky P G. et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.

[76] Gecevicius M, Drevinskas R, Beresna M. et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Applied Physics Letters, 2014, 104(23): 231110.

[77] Gecevicius M, Beresna M, Kazansky P G. Polarization sensitive camera by femtosecond laser nanostructuring[J]. Optics Letters, 2013, 38(20): 4096-4099.

[78] Gecevicius M, Beresna M, Drevinskas R. et al. Airy beams generated by ultrafast laser-imprinted space-variant nanostructures in glass[J]. Optics Letters, 2014, 39(24): 6791-6794.

[79] Drevinskas R, Gecevicius M, Beresna M. et al. Tailored surface birefringence by femtosecond laser assisted wet etching[J]. Optics Express, 2015, 23(2): 1428-1437.

[80] Desmarchelier R, Lancry M, Gecevicius M. et al. Achromatic polarization rotator imprinted by ultrafast laser nanostructuring in glass[J]. Applied Physics Letters, 2015, 107(18): 181111.

[81] Kondo Y, Nouchi K, Mitsuyu T. et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters, 1999, 24(10): 646-648.

[82] Grobnic D, Mihailov S J, Smelser C W. et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications[J]. IEEE Photonics Technology Letters, 2004, 16(11): 2505-2507.

[83] Rao Y J, Deng M, Duan D W. et al. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser[J]. Optics Express, 2007, 15(21): 14123-14128.

[84] Chah K, Kinet D, Wuilpart M. et al. Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber[J]. Optics Letters, 2013, 38(4): 594-596.

[85] Lacraz A, Polis M, Theodosiou A. et al. Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber[J]. IEEE Photonics Technology Letters, 2015, 27(7): 693-696.

王珏晨, 张芳腾, 邱建荣. 单光束飞秒激光诱导玻璃内部纳米光栅机理及应用研究进展[J]. 中国激光, 2017, 44(1): 0102001. Wang Juechen, Zhang Fangteng, Qiu Jianrong. Research Progresson Single Femtosecond Laser Induced Nanogratings in Glass: Fundamentals and Applications[J]. Chinese Journal of Lasers, 2017, 44(1): 0102001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!