中国激光, 2013, 40 (8): 0803006, 网络出版: 2013-07-26   

激光喷丸提高TC11钛合金高周疲劳性能的试验研究

Experimental Study on Improving High-Cycle Fatigue Performance of TC11 Titanium alloy by Laser Shock Peening
作者单位
1 空军工程大学航空航天工程学院, 等离子体动力学重点实验室, 陕西 西安 710038
2 西安交通大学机械工程学院, 陕西 西安 710049
摘要
对TC11钛合金标准疲劳试件进行激光喷丸处理,利用高周振动疲劳试验验证强化效果,通过断口观察分析疲劳机理,再从微观组织、残余应力和显微硬度等方面分析激光喷丸提高TC11钛合金疲劳性能的强化机制。试验结果表明,强化后疲劳试件的疲劳极限由483 MPa提高到593 MPa;强化试件的裂纹源位于次表层深0.2 mm处,平坦区扩大,快速扩展区产生大量二次裂纹和排列紧密的疲劳条带。表层发生较高程度细化,形成尺寸为40~80 nm的纳米晶;并引入高数值残余压应力,表面残余应力达-591.5 MPa,其塑性变形层深度达1 mm,且表面硬度提高19%。TC11钛合金标准疲劳试件强化后疲劳强度提高主要是因为高程度组织细化和高数值残余压应力的综合作用,进而阻碍裂纹萌生和降低扩展速率。
Abstract
The standard vibration fatigue specimens, made of TC11 titanium alloy, are treated by laser shock peening (LSP). The high-cycle vibration tests are conducted to verify the reinforcement effect, and the fracture analysis is utilized to analyze the fatigue mechanism of the treated specimens. The strengthening mechanism of fatigue performance is explained by the experiments of microstructure, residual stress and microhardness. The tests results show that the fatigue limit is improved from 483 MPa to 593 MPa by LSP. Fatigue crack of specimens treated by LSP initiates in the subsurface of 0.2-mm depth with a greater flatness area and lots of second-cracks and tight fatigue bands. A layer with nanocrystals is generated on the surface by LSP, and the size of nanocrystal is about 40~80 nm. LSP introduce a great compressive residual stress in the material with a 1-mm thick plastic deformation layer. The residual stress in the surface can reach -591.5 MPa, while the surface hardness is increased by 19%. The combined actions of high structure refinement and high compressive residual stress are the main causes of the fatigue performance improvement, which block fatigue crack initiating and reduce crack growth rate.
参考文献

[1] R Fabbro, J Fournier, P Ballard, et al.. Physical study of laser-produced plasma in confined geometry[J]. J Appl Phy, 1990, 68(2): 775-784.

[2] Charles S Montross, Tao Wei, Lin Ye, et al.. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International J Fatigue, 2002, 24(10): 1021-1036.

[3] 李伟, 李应红, 何卫锋, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 15-19.

    Li Wei, LiYinghong, He Weifeng, et al.. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19.

[4] P Peyre, R Fabbro, P Merrien, et al.. Laser shock processing of aluminium alloys: application to high cycle fatigue behavior[J]. Materials Science and Engineering A, 1996, 210(1-2): 102-113.

[5] Zhou Lei, He Weifeng, Wang Xuede. Effect of laser shock processing on high cycle properties of 1Cr11Ni2W2MoV stainless steel[J]. Rare Materials and Engineering, 2011, 40(s4): 174-177.

[6] Hyuntaeck Lim, Pilkyu Kim, Hoemin Jeong, et al.. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. J Materials Processing Technology, 2012, 212(6): 1347-1354.

[7] W. Sagawaa, T. Aokib, T. Itoua, et al.. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure[J]. Nuclear Engineering and Design, 2009, 239(4): 655-664.

[8] 邹世坤, 王健, 王华明, 等. 激光冲击处理金属板材后的裂纹扩展速率[J]. 激光技术, 2002, 26(3):189-191.

    Zou Shikun, Wang Jian, Wang Huaming, et al.. Fatigue growth rate of laser shock processed metal sheet[J]. Laser Technology, 2002, 26(3): 189-191.

[9] 任旭东, 张田, 张永康, 等. 激光冲击处理提高00Cr12 合金的疲劳性能[J]. 中国激光, 2010, 37(8): 2111-2115.

    Ren Xudong, Zhang Tian, Zhang Yongkang, et al.. Improving fatigue properties of 00Cr12 alloy by laser shock processing[J]. Chinese J lasers, 2010, 37(8): 2111-2115.

[10] 吴边, 王声波, 郭大浩, 等. 强激光冲击铝合金改性处理研究[J]. 光学学报, 2005, 25(10): 1352-1356.

    Wu Bian, Wang Shengbo, Guo Dahao, et al.. Research of material modification induced by laser shock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10): 1352-1356.

[11] 曹子文, 邹世坤, 刘方军, 等. 激光冲击处理1Cr11Ni2W2MoV不锈钢[J]. 中国激光, 2008, 35(2): 316-320.

    Cao Ziwen, Zou Shikun, Liu Fangjun, et al.. Laser shock processing on 1Cr11Ni2W2MoV martensite steel[J]. Chinese J Lasers, 2008, 35(2): 316-320.

[12] 王声波, 范勇, 吴鸿兴, 等. 7050 航空铝合金结构材料激光冲击强化处理研究[J]. 中国激光, 2004, 31(1): 125-128.

    Wang Shengbo, Fan Yong, Wu Hongxing, et al.. Research of strengt hening 7050 aerial aluminum alloy structural material with laser shock processing[J]. Chinese J Lasers, 2004, 31(1): 125-128.

[13] 李伟, 何卫锋, 李应红, 等.激光冲击强化对k417材料振动疲劳性能的影响[J]. 中国激光, 2009, 36(8): 2197-2201.

    Li Wei, He Weifeng, Li Yinghong, et al.. Effects of laser shock processing on vibration fatigue properties of K417 material[J]. Chinese J Lasers, 2009, 36(8): 2197-2201.

[14] 汪诚, 任旭东, 周鑫, 等. 激光冲击对GH742镍基合金疲劳短裂纹扩展的影响[J]. 金属热处理学报, 2009, 34(7): 57-60.

    Wang Cheng, Ren Xudong, Zhou Xin, et al.. Influence of laser shock processing on short crack growth of GH742 nickel-base alloy[J]. Heat Treatment of Metals, 2009, 34(7): 57-60.

[15] 何卫锋, 李应红, 李伟, 等. 激光冲击强化提高压气机叶片疲劳性能研究[J]. 航空动力学报, 2011, 26(7): 1551-1556.

    He Weifeng, Li Yinghong, Li Wei, et al.. Laser shock peening on vibration fatigue behavior of compressor blade[J]. J Aerospace Power, 2011, 26(7): 1551-1556.

[16] J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

[17] J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

[18] 《航空制造工程手册》总编委会. 航空制造工程手册[M]. 北京: 航空工业出版社, 1997. 235-237.

    “Aeronautical Manufacture Engineering Handbook” Edits Committee. Aeronautical Manufacture Engineering Handbook[M]. Beijing: Aerospace Industry Press, 1997. 235-237.

[19] 王学德, 李应红, 李启鹏, 等. TC6钛合金激光喷丸纳米组织特性及热稳定性研究[J]. 南京航空航天大学学报, 2012, 29(1): 68-76.

    Wang Xuede, Li Yinghong, Li Qipeng, et al.. Property and thermostablity study on TC6 titanium alloy nanostructure processed by LSP[J]. Journal of Nanjing University of Aeronautics & Atronautics, 2012, 29(1): 68-76.

[20] Xiangfan Nie, Weifeng He, Liucheng Zhou, et al.. Effects of laser shock peening on TC11 titanium alloy with different impacts[J]. Advance Materials Research, 2013, 681: 266-270.

[21] Zhou Lei, He Weifeng, Wang Xuede. Effect of laser shock processing on high cycle properties of 1Cr11Ni2W2MoV stainless steel[J]. Rare Materials and Engineering, 2011, 40(s4): 174-177.

[22] 周磊, 李应红, 翟旭生, 等. 利用激光冲击强化提高均压孔结构的疲劳寿命[J]. 南京航空航天大学学报, 2010, 42(3): 379-382.

    Zhou Lei, Li Yinghong, Zhai Xusheng, et al.. Fatigue-life improvement of symmetrical pressure hole by laser shock processing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3): 379-382.

[23] 马壮. 航空发动机部件激光冲击强化应用基础研究[D]. 西安: 空军工程大学工程学院, 2008. 37-38.

    Ma Zhuang. Fundamental Research on Laser Shock Processing Used on Aero-Engine Parts[D]. Xi′an: Engineering Institute of Air Force University, 2008. 37-38.

[24] N E Frost, K J Marsh, L P Pook. Metal Fatigue[M]. London: Oxford Univ Press, 1974. 130-195.

聂祥樊, 何卫锋, 臧顺来, 王学德, 李玉琴. 激光喷丸提高TC11钛合金高周疲劳性能的试验研究[J]. 中国激光, 2013, 40(8): 0803006. Nie Xiangfan, He Weifeng, Zang Shunlai, Wang Xuede, Li Yuqin. Experimental Study on Improving High-Cycle Fatigue Performance of TC11 Titanium alloy by Laser Shock Peening[J]. Chinese Journal of Lasers, 2013, 40(8): 0803006.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!