红外与毫米波学报, 2018, 37 (2): 129, 网络出版: 2018-05-29  

C掺杂金红石结构TiO2的第一性原理研究

Understanding ferromagnetism in Carbon-doped rutile TiO2: first-principles calculations
作者单位
1 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2 美国加利福尼亚大学物理系 戴维斯分校, CA 95616-8677
摘要
利用基于密度泛函的第一性原理研究了非磁性轻元素C掺杂金红石TiO2的性质,这在自旋电子和红外电子领域具有潜在的应用前景.结果显示:C原子更倾向于形成铁磁耦合并围绕在Ti原子周围,每个C原子的磁矩大约为1.3 μB.体系的铁磁性来源于p-d轨道杂化和类p-d杂化的p-p耦合共同作用,p-p耦合主要来自类p-t2g 和价带p态耦合.
Abstract
First-principles calculations based on density functional theory have been performed on the nonmagnetic 2p light element carbon-doped rutile TiO2, which is very appealing for spintronics and infranics. The results show that carbon dopants tend to couple ferromagnetically around the Ti atom in the rutile structure, and the magnetic moment per C is about 1.3 μB. The ferromagnetism is predicted to be the collective effects from a p-d exchange hybridization and a p-d exchange-like p-p coupling interaction, between the impurity (p-like t2g) and valence (p) states.
参考文献

[1] Shan G B, Demopoulos G P. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer [J]. Adv. Mater. 2010, 22: 4373.

[2] Takeshita K, Yamakata A, Ishibashi T, et al. Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2 [J]. J Photochem Phytobiol A: Chem. 2006, 177: 269-75.

[3] Ratanatawanate C, Xiong C R, Balkus K J. Fabrication of PbS quantum dot doped TiO2 nanotubes [J]. ACS Nano. 2008, 2:1682-1688.

[4] Janisch R, Gopal P, Spaldin N A, Transition metal-doped TiO2 and ZnO—present status of the field [J]. J. Phys.: Condens. Matter. 2005, 17: R657.

[5] Mallia G, Harrison N M. Magnetic moment and coupling mechanism of iron-doped rutile TiO2 from first principles [J]. Phys. Rev. B, 2007, 75: 165201.

[6] Hu S J, Yan S S, Yao X X, et al. Electronic structure and magnetic properties of Fe0.125Sn0.875O2 [J]. Phys. Rev. B, 2007, 75: 094412.

[7] Komen C V, Thurber A, Reddy K M, et al. Structure-magnetic property relationship in transition metal (M=V,Cr,Mn,Fe,Co,Ni)(M=V,Cr,Mn,Fe,Co,Ni) doped SnO2SnO2 nanoparticles [J]. J. Appl. Phys. 2008, 103: 07D141.

[8] Philip J, Punnoose A, Kim B I, et al. Carrier-controlled ferromagnetism in transparent oxide semiconductors [J]. Nat. Mter. 2006, 5: 298.

[9] Coey J M D, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide [J]. Phys. Rev. B, 2005, 72: 024450.

[10] Bai H L, He S M, Shuai X T, Ferromagnetism, variable range hopping and anomalous Hall effect in epitaxial Co:ZnO thin film [J]. Chin. Phys. B. 2012, 21: 107201.

[11] Dai Y Y, Yan S S, Tian Y F, et al. Universal spin-dependent variable range hopping in wide-band-gap oxide ferromagnetic semiconductors [J]. Chin. Phys. B, 2010,19(3):037203.

[12] Jia C W, Xie E Q, Zhao J G, et al. Visible and near-infrared photoluminescences of europium-doped titania film [J]. J. Appl. Phys. 2006, 100: 023529.

[13] Komuro S, Katsumata T, Kokai H, et al. Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction[J]. Appl. Phys. Lett. 2002, 81: 4733.

[14] Gao H T, Ding C H, Dai D M, Density functional characterization of C-doped anatase TiO2 with different oxidation state [J]. Journal of Molecular Structure: THEOCHEM, 2010, 944: 156-162.

[15] Tian F H, Liu C B, Zhang D J, et al. On the Origin of the Visible-Light Activity of Titanium Dioxide Doped with Carbonate Species [J]. Chem. Phys. Chem 2010, 11: 3269-3272.

[16] Wang P, Liu Z R, Lin F, et al. Optimizing photoelectrochemical properties of TiO2 by chemical codoping [J]. Phys. Rev. B 2010, 82: 193103.

[17] Zhang R H, Wang Q, Li Q, et al. First-principle calculations on optical properties of C-N-doped and C-N-codoped anatase TiO2 [J]. Physica B, 2011, 406: 3417-3422.

[18] Zainullina V M, Zhukov V P , Korotin M A, et al. Effect of doping by boron, carbon, and nitrogen atoms on the magnetic and photocatalytic properties of anatase [J]. Physics of the Solid State, 2011,53(7):1353-1361.

[19] Long R, English N G. Density functional theory studies of doping in titania [J]. Molecular Simulation 36, Nos. 2010,7-8:618-632.

[20] Yu Z, Li X, Long X, et al. The study of a new n/p tunnel recombination junction and its application in a-Si:H/μc-Si:H tandem solar cells [J]. Chin. Phys. B. 2009, 18: 1674-1678.

[21] Sedkya A, El-Suheel E. Structural and electronic characteristics of pure and doped ZnO varistors [J]. Chin. Phys. B, 2012,21(11):116103.

[22] Duhalde S, Vignolo M F, Golmar F, et al. Appearance of room-temperature ferromagnetism in Cu-doped TiO2-delta films [J]. Phys. Rev. B, 2005, 72: 161313.

[23] Elfimov I S, Rusydi A, Csiszar S I, et al. Magnetizing oxides by substituting nitrogen for oxygen [J]. Phys. Rev. Lett. 2007, 98: 137202.

[24] Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-doped ZnO[J]. Phys. Rev. Lett. 2007, 99:127201.

[25] Shen L, Wu R Q, Pan H, et al. Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations [J]. Phys. Rev. B. 2008, 78:073306.

[26] Yu C F, Lin T J, Sun S J, et al. Origin of ferromagnetism in nitrogen embedded ZnO: N thin films [J]. J Phys D: Appl. Phys. 2007, 40: 6497.

[27] Bannikov V V, I. R. Shein I R, V. L. Kozhevnikov V L, et al. Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3 [J]. J. Magn. Magn. Mater. 2008, 320: 936.

[28] Wu R Q, Liu L, Peng G W, et al. Magnetism in BN nanotubes induced by carbon doping [J]. Appl. Phys. Lett. 2005, 86:122510.

[29] Ohldag H, Tyliszczak T, Hhne R, et al. pi-Electron ferromagnetism in metal-free carbon probed by soft x-ray dichroism [J]. Phys. Rev. Lett. 2007, 98:187204.

[30] Blchl P E, Projector augmented-wave method[J].Phys. Rev. B. 1994, 50: 17953.

[31] Kresse G, Furtmüller J, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169.

[32] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett. 1996, 77: 3865.

[33] Monkhorst H J, Pack J D, Special points for brillouin-zone integrations [J]. Phys. Rev. B. 1976, 13: 5188.

黄文超, 王晓芳, 陈效双, 陆卫, 方敬尧. C掺杂金红石结构TiO2的第一性原理研究[J]. 红外与毫米波学报, 2018, 37(2): 129. HUANG Wen-Chao, WANG Xiao-Fang, CHEN Xiao-Shuang, LU Wei, FONG Ching-Yao. Understanding ferromagnetism in Carbon-doped rutile TiO2: first-principles calculations[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 129.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!