红外与激光工程, 2018, 47 (9): 0921002, 网络出版: 2018-10-06   

石墨烯/铜镍铁氧体复合材料的制备及性能研究

Research on preparation and properties of graphene/copper nickel ferrite composites
作者单位
1 国防科技大学 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
2 安徽省红外与低温等离子体重点实验室, 安徽 合肥 230037
摘要
为制备出宽波段磁波衰减材料, 采用水热法制备得到了石墨烯/铜镍铁氧体复合材料(CNFRGO), 并对其进行SEM、XRD、红外光谱和拉曼光谱表征分析; 然后测量其2~18 GHz的电磁参数, 并计算其损耗角正切值和反射损耗, 进而分析其微波衰减性能; 最后, 测量其中远红外波段的复折射率, 利用测量数据和T矩阵法计算分析其红外波段消光和吸收性能。结果表明, 尖晶石型铜镍铁氧体纳米颗粒吸附在还原石墨烯上, 粒径大部分约为20 nm; CNFRGO同时具有介电损耗和磁损耗两种机制, 其反射损耗低于-10 dB的频宽为3.7 GHz, 在11.8 GHz处有峰值-14.7 dB; CNFRGO在近红外波段消光较强主要由散射引起, 中远红外波段则主要由吸收决定, 而其吸收能力在近红外和中红外波段较强, 但在远红外大气窗口内相对较弱。因此, CNFRGO可同时吸收微波和红外辐射, 是一种良好的微波与红外兼容材料。
Abstract
In order to prepare electromagnetic wave attenuation materials in wide-band, the hydrothermal method was used to prepare graphene/copper nickel ferrite composite (CNFRGO), and the composite was characterized by SEM, XRD, IR and Raman spectrum. Secondly, the electromagnetic parameters of the composite were measured at 2-18 GHz. Moreover, the loss tangent and reflection loss were calculated to analyze its microwave attenuation performance. Finally, its complex refractive index in IR band was measured, and its extinction and absorption properties were calculated and analysed by using the measured data and the T matrix method. The results show that the spinel-type copper nickel ferrite nanoparticles are adsorbed on the surface of reduced graphene oxide, and the particle size is mostly around 20 nm. CNFRGO have both dielectric and magnetic loss, and the bandwidth of its reflection loss lower than -10 dB is 3.7 GHz, and its peak is -14.7 dB at 11.8 GHz. In near-IR band, the strong extinction of CNFRGO is mainly caused by scattering. It′s mainly due to absorption in middle and far IR band, and its absorption ability in near and middle IR band is strong, but it′s relatively weak in far IR atmospheric window. Therefore, microwave and IR radiation can be absorbed simultaneously by CNFRGO, and it′s a good microwave and infrared compatible material.
参考文献

[1] Solano E, Perez-Mirabet L, Martinez-Julian F, et al. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles[J]. Journal of Nanoparticle Research, 2012, 14(8): 1034-1039.

[2] Paramasivan P, Venkatesh P. Controllable synthesis of CuFe2O4 nanostructures through simple hydrothermal method in the presence of thioglycolic acid[J]. Physica E: Low-dimensional Systems and Nanostructures, 2016, 84(1): 258-262.

[3] Liu Hongli. Synthesis and adsorption performance of ferrit-graphene composities[D]. Beijing: Beijing University of Chemical Technology, 2013. (in Chinese)

[4] Sun X, Sheng L, Yang J, et al. Three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO)/barium ferrite nanocomposites for electromagnetic absorption[J]. Journal of Materials Science Materials in Electronics, 2017, 13(3): 1-9.

[5] Wang W, Hao Q, Lei W, et al. Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 269(269): 250-259.

[6] Bhattacharya P, Dhibar S, Hatui G, et al. Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications[J]. Rsc Advances, 2014, 4(33): 17039-17053.

[7] Chen X, Hou C, Zhang Q, et al. One-step synthesis of Co-Ni ferrite/graphene nanocomposites with controllable magnetic and electrical properties[J]. Materials Science & Engineering B, 2012, 177(13): 1067-1072.

[8] Hee A C, Mehrali M, Metselaar H S C, et al. Comparison of nanostructured nickel zinc ferrite and magnesium copper zinc ferrite prepared by water-in-oil microemulsion[J]. Electronic Materials Letters, 2012, 8(6): 639-642.

[9] Li Qing. Preparation and microwave absorption properties of grapheme composite materials[D]. Xi′an: North University of China, 2016. (in Chinese)

[10] Xiong Liang. Preparation and electromagnetic properties of the MnFe2O4/graphene composites[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)

[11] Sun Yinfeng, Li Peifang, Bao Guizhi. Study on the microwave absorption performances and structural analysis of rare earth doped Z type barium ferrite/graphene domposite materials[J]. Carbon Techniques, 2016, 35(5): 52-55. (in Chinese)

[12] Li Shuai, Xun Qining, Zhang Yu, et al. Preparation and microwave absorbing properties of Fe3O4 hollow sphere/RGO composite[J]. Chemical Analysis and Meterage, 2014, 23(5): 83-87. (in Chinese)

[13] Liu Zhaojun. Study of graphene(carbon nanotubes)/ LiZn ferrites temperature controlled composite materials[D]. Ji′nan: Shandong University, 2016. (in Chinese)

[14] Zhang Na, Huang Ying, Zong Meng, et al. Research progress of graphene based on microwave absorbing composite materials[J]. Material Development and Application, 2014, 29(5): 89-96. (in Chinese)

[15] Liu P, Yao Z, Zhou J, et al. Small magnetic co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance[J]. Journal of Materials Chemistry C, 2016, 4(41): 9738-9749.

[16] Durmus Z, Durmus A, Kavas H. Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material[J]. Journal of Materials Science, 2015, 50(3): 1201-1213.

[17] Bao Lixia, Qiao Xiaojing, Li Wangchang, et al. IR interference performance of carbon/ferromagnet composite materials[J]. Infrared and Laser Engineering, 2011, 40(8):1416-1419. (in Chinese)

[18] Zhang H, Gao S, Shang N, et al. Copper ferrite-graphene hybrid: A highly efficient magnetic catalyst for chemoselective reduction of nitroarenes[J]. Cheminform, 2015, 46(8): 31328-31332.

[19] Dai X Q, Tang Y N, Zhao J H. The effects of defects on Pt absorption on graphene[J]. Journal of Atomic and Molecular Physics, 2010, 27(5): 937-941. (in Chinese)

[20] Xu N, Zhang C, Kong F J, et al. Transport properties of corrugated graphene nanoribbons[J]. Acta Phys Chim Sin, 2011, 27(9): 2107-2110. (in Chinese)

[21] Wu Xiaoyu, Li Songmei, Liu Jianhua, et al. Preparation and microwave absorption properties of CoFe2O4-graphene nanocomposites[J]. Journal of Inorganic Materials, 2014, 29(8): 845-850. (in Chinese)

[22] Ding S J, Ge D B, Huang L H. Impedance matching condition of electromagnetic absorbing material[J]. Chinese Journal of Radio Science, 2009, 24(6): 1104-1108.

[23] Pan Ruzhong, Deng Weilin, Qian Jinfu. Discussion on the approaches for developing high quality infrared radiation materials[J]. Journal of Infrared Millimeter & Waves, 1991, 10(2): 312-316. (in Chinese)

[24] Wang Baoming, Su Dazhao, Zhang Guangyin. Properties and mechanisms of infrared radiation of high emittance materials[J]. Journal of Infrared & Millimeter Waves, 1983, 2(1): 55-62. (in Chinese)

马德跃, 李晓霞, 郭宇翔, 曾宇润. 石墨烯/铜镍铁氧体复合材料的制备及性能研究[J]. 红外与激光工程, 2018, 47(9): 0921002. Ma Deyue, Li Xiaoxia, Guo Yuxiang, Zeng Yurun. Research on preparation and properties of graphene/copper nickel ferrite composites[J]. Infrared and Laser Engineering, 2018, 47(9): 0921002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!