光学学报, 2018, 38 (1): 0106003, 网络出版: 2018-08-31   

空间光通信中基于多输入多输出的级联码方案研究 下载: 923次

Cascade Scheme Based on Multiple-Input Multiple-Output in Spatial Optical Communication
作者单位
重庆理工大学电气与电子工程学院, 重庆 400054
摘要
针对多输入多输出自由空间光通信系统中误码扩散的问题,提出一种卢比变换码与奇偶检验码级联的级联码方案,该方案通过在卢比变换编码包后增加一位校验元来定位并删除其中错误的编码包,同时仿真比较卢比变换码与级联码的性能。在不同多输入多输出组数和通信距离的系统下对级联码进行仿真验证,模拟不同大气湍流强度信道。仿真结果表明:译码开销不超过0.5时,级联码可提升译码成功率;在相同湍流环境下,相比于天线个数为2×2的系统,天线个数为3×3的系统大约有3 dB的编码增益,且采用级联码后,当误码率为10 -5左右时,编码增益提升范围为0.5 dB~2 dB;在强湍流环境下,当天线个数相同时,随着通信距离的增大,相比于卢比变换码,级联码仍有一定的编码增益优势。
Abstract
Aim

ing at the problem of error diffusion in multiple-input multiple-output free-space optical (MIMO-FSO) communication system, we propose a cascaded code(LT-PC) scheme of the Luby transform (LT) code and the parity check (PC) code. The LT-PC scheme can locate and delete wrong packets by adding a checker based on LT code. The performance of the LT code is compared with that of the LT-PC code. The LT-PC code is verified by the simulation under the systems with different number of MIMO groups and communication distances. Different atmospheric turbulence intensity channels are also simulated. The results show that the LT-PC code can improve the success rate of decoding when the decoding overhead is less than 0.5. In the same turbulence environment, the system with antenna number of 3×3 has about 3 dB coding gain compared with the system with antenna number of 2×2. After using the LT-PC code, the improving range of the coding gain is 0.5 dB~2 dB when the bit error rate is about 10 -5. In the strong turbulence environment, the LT-PC code still has certain advantages over the LT code with the increase of the communication distance when the numbers of antennas are the same.

1 引言

自由空间光(FSO)通信具有频谱资源丰富、传输速率高、带宽高、抗干扰能力强和携带方便等优点[1-2],近年来已成为宽带无线接入、空间卫星通信、混合组网等领域的一项热门技术[3]。然而在大气传输过程中,分子、原子等粒子的吸收、散射效应以及湍流因素使接收的激光信号受到严重衰减与起伏,极大地降低了FSO通信链路的传输可靠性[4-6]

为克服大气湍流对FSO通信链路的影响,Ibrahim等[7]提出将多输入多输出(MIMO)技术应用于FSO通信链路,可有效地提高抗衰落能力;Navidpour等[8-9]分别研究了在弱湍流与强湍流环境下MIMO-FSO链路的误码性能,同时给出了MIMO-FSO系统平均误码率(BER)的有效近似闭式表达式;Qin等[10]分析广义选择多用户调度对于MIMO-FSO系统的影响,在Gamma-Gamma信道下推导出中断概率的闭环表达式,同时进一步讨论了信道波动所提供的分集效益;韩立强等[11]建立综合大气效应下MIMO信道模型和系统模型,推导了等增益分集合并下FSO通信系统的遍历容量和中断概率闭合表达式;柯熙政等[12]在MIMO-FSO系统基础上,提出垂直分层空时(V-BLAST)结构,比较了不同的MIMO组数条件下脉冲位置调制(PPM)和开关键控(OOK)调制两种调制方式的系统误码率;郝士琦等[13]研究了基于低密度奇偶校验(LDPC)码的MIMO无线光通信系统性能,给出基于LDPC码的空时编码MIMO和重复编码MIMO系统的解码算法;Fan等[14]介绍了喷泉码,喷泉码因具有无码率特性可自适应于大气衰落信道,从分集复用权衡(DMTO)的角度分析了喷泉码在MIMO衰落信道上的性能,并提出MIMO衰落信道上喷泉码的设计准则;刘世涛等[15]研究了基于Gamma-Gamma信道和卢比变换(LT)码的MIMO-FSO系统误码率,但激光信号在通过LT编码器编码后可能会出现错误的编码包,这些错误的编码包经过置信传播(BP)译码后,会产生误码扩散的现象,降低了MIMO-FSO系统的通信性能。

本文针对误码扩散的问题,提出一种LT码与奇偶校验码(PC)级联的级联码方案,简称LT-PC码。激光信号经过LT编码器编码,在编码包后添加奇偶校验位进行校验,出现错误则删除。由于LT码是一种无码率的纠删码[16-17],删除错误的编码包对译码不会造成影响,可有效抑制误码扩散的产生。在Gamma-Gamma信道模型下进行仿真,基于LT-PC码的MIMO-FSO系统与基于LT码的MIMO-FSO系统相比,前者的通信性能提升较大。

2 MIMO-FSO系统模型

2.1 MIMO-FSO结构

基于LT-PC码的MIMO-FSO垂直分层空时结构如图1所示。以二进制数据形式存在的信源经过串并转换后分别由M个LT编码器编码,在这些编码包后增加校验位进行检错,再进行空时编码,经OOK调制后由激光器阵列通过M个光学天线同频发射出去,经过大气信道传输,发出的光信号经捕获、跟踪、对准(ATP)后,被N个等增益光学接收天线接收,送往N个PIN光电探测器进行光电转换,输出的信号与信道估计出的传输特性矩阵一起通过反馈均衡器抵消干扰,然后将信号进行空时译码和信道译码,经过串并转换处理后恢复原信号。

图 1. MIMO-FSO系统模型

Fig. 1. MIMO-FSO system model

下载图片 查看所有图片

图 2. LT-PC-垂直分层空时编码

Fig. 2. LT-PC-vertical layered space-time coding

下载图片 查看所有图片

2.2 MIMO-FSO垂直分层空时码编译码算法

垂直分层空时码可以提高MIMO-FSO系统的抗衰落性能,也无需添加0码,不会造成信息码的冗余[18]。为了使垂直分层空时算法适用于空间光通信系统,将该结构的编译码进行了不同程度的改造。

LT-PC-垂直分层空时编码是将并行信道编码器的输出按垂直方向进行空间编码,其编码原理如图2所示。假设发送天线数目M为3,将LT-PC码等效为信道编码器,按照图1所给出的MIMO-FSO系统结构,以二进制数据形式存在的信源经过串并转换后分别由M个LT编码器编码,在这M个编码包后增加校验位进行检错,得到M个LT-PC码编码包,如经过信道编码器1编码后的码元为{b0,1,b1,1,b2,1,b3,1,b4,1,…},按垂直方向进行空间编码后,第1个信道编码器输出的M个码元排在第1列,第2个信道编码器输出的M个码元排在第2列,一般第s个信道编码器输出的第tM个码元(每M个码元一组)排在第s+(t-1)M列。编码后的码元按列由M副天线同时发送到信道中。例如,图2中码元b4,1表示未进行空间编码时它属于第1个信道编码器输出的第2组,按垂直方向进行空间编码后,它的位置在第4列,即1+(2-1)×3=4。

分层空时码译码算法分为最大似然(ML)算法、破零(ZF)算法和最小均方误差(MMSE)算法[19]。ML算法可提供满分集增益和零功率损耗,但发射天线数目M较多时,工作量基本不可能完成;ZF算法可很好地分离同频信号,但只能在较高信噪比(SNR)时才能保持较好的性能;MMSE算法可使由噪声和同频信号相互干扰造成的误码率最小,虽然它降低了信号分离的质量,但具有较好的抗噪性能[20],文中软件仿真采用的是MMSE算法。

MIMO-FSO系统信道模型表示为

y(t)=ηHx(t)+n(t),(1)

式中η为光电转换效率,调制信号矩阵x(t)为[x1(t),x2(t),…,xM(t)]T,接收端信号矩阵y(t)为[y1(t),y2(t),…,yN(t)]T,噪声矩阵n(t)为[n1(t),n2(t),…,nN(t)]T,其各个分量之间相互独立统计,H为方差 σn2、零均值的加性高斯白噪声,信道特征矩阵为

H=h11h12h1Mh21h22h2MhN1hN2hNM(2)

在文献[ 12]中,根据MMSE算法,由相关公式与迭代算法可恢复发射端的调制信号阵列x(t),从而完成译码。

2.3 大气信道模型

MIMO-FSO链路主要受到大气衰减和大气湍流的影响,其中大气衰减主要影响通信系统的通信距离,而大气湍流会使光波参量在传输过程中由于大气折射率的改变而发生随机变化,影响通信质量。因此,文中主要考虑大气湍流效应带来的影响[21-22]

根据湍流强弱的不同,多种统计模型可用来描述湍流强弱。针对弱湍流,信道模型服从对数正态分布[23];针对强湍流,多数服从指数分布[24]。实验及理论表明双伽马(Gamma-Gamma)分布能够较为准确地描述大气湍流信道,其概率分布函数为[25]

PI(I)=(αβ)(α+β)/2Γ(α)Γ(β)I(α+β/2)-1Kα-β2αβI),(3)

式中I为信号强度,Γ为伽马函数,Kα-β为修正的第二类贝塞尔函数,阶次为α-β,αβ是Gamma-Gamma分布的参数,表达式为[26]

α-1=exp0.49δ2(1+0.18d2+0.56δ125)76-1,(4)β-1=exp0.51δ2(1+0.69δ125)-5/6(1+0.9d2+0.62d2δ125)56-1,(5)

式中d=kD2/(4L),k=为波数,λ为波长,L为通信距离,D为接收端的接收孔径;δ2为Rytov方差,在弱起伏情况下,δ2=1.23 Cn2k7/6L11627Cn2为折射率结构常数, Cn2=(79×10-6P/T2)2CT2,其中PTCT2分别表示大气压力、温度和温度结构常数[28]Cn2的变化范围是10-17~10-13 m-2/3,对应于弱湍流到强湍流[29]。参考文献[ 30]相关公式推导可得该MIMO-FSO系统的误码率表达式为

Pe=2αS+βS-3π3Γ(αS)Γ(βS)·G5,22,42αSβS2γ1-αS2,2-αS2,1-βS2,2-βS2,10,12,6

式中αS=Sα,βS=Sβ,其中S=M×N,MN分别为MIMO-FSO系统发送天线与接收天线数目,γ表示MIMO-FSO通信链路的平均信噪比(SNR),G(·)为Meijer’s函数。

3 级联码方案

3.1 误码扩散分析

LT码编译码原理可参考文献[ 15],在LT码编码过程中可生成任意个数的编码包,在这些编码包后增加奇偶校验位逐个进行校验,校验后的编码包可通过BP译码方法还原信息。

图3为编码包T2错误时在BP译码过程中的状态转移图。若在LT码编码过程中生成错误的编码包,这些编码包在译码过程中会通过异或运算不断得到错误的源数据包,从而产生误码扩散现象。文献[ 31]验证了误码扩散会使采用喷泉码的图像产生扭曲、错位和颜色失真,甚至会导致整幅图完全失真。LT码作为喷泉码的一类具体实施方案,同样存在类似情形,必须采取措施进行纠正,因此提出用奇偶校验码来校验并且删除编码过程中出现的错误编码包,可有效遏制误码扩散现象。

图 3. T2错误时BP译码状态转移图。(a) T2错误转移至S2;(b)异或后T3、T4错误;(c) T4错误转移至S3;(d)异或后T1错误;(e) T1或T3错误转移至S1;(f)译码结束

Fig. 3. BP decoding state transition diagram when T2 has error. (a) T2's error transfers to S2; (b) after XOR, T3 and T4 have errors; (c) T4's error transfers to S3; (d) after XOR, T1 has error; (e) errors of T1 or T3 transfer to S1; (f) decoding ends

下载图片 查看所有图片

3.2 校验原理

奇偶校验码是一种最简单的纠错码,其编码方式是在码字的末尾添加一个奇偶校验位,使得码字中“1”的个数恒为奇数(奇校验)或偶数(偶校验),以此来实现对信息的检错。它能检测出单个错误,但不具备纠错功能,故本文采用偶校验。

根据LT码编码算法得到单个编码包,该编码包有n-1个码元,在该编码包后添加一个检验码元,得到(n,n-1)奇偶校验码。假设a1,a2,…,an-1表示n-1个信息码元,a0表示校验码元,则

a0a1a2an-1=0,(7)

式中⊕表示异或运算,即有限域GF(2)[32]上的加法运算。对于偶数校验,信息码元与校验码元之和为1代表有错,但奇偶校验码中出现偶数个错误码元时,错误码元不能被发现,因此,只有当出现奇数个错误码元时才能被发现。

具体利用奇偶校验码进行检错的步骤如下:

1) 将某一源数据包通过LT码编码器得到编码包;

2) 在该编码包末尾添加校验位,得到奇偶校验码,根据奇偶检验码原理进行检错;

3) 若检测出错误,则删除该编码包;若未检测出错误,继续通过步骤1)~3)逐个检测每个编码包,直至未检测出错误编码包为止。

3.3 级联码性能分析

本文设计一种LT码与PC码级联的级联码,简称LT-PC码。根据LT码的编码原理与LT码200~500 Byte的典型包长,结合奇偶校验码校验机制,对编码后的错误编码包进行定位、删除,根据纠删码无码率的特性实现接收无误码情形下LT码的正确译码。同时,LT-PC码的译码过程与传统BP译码过程有2点差异:1)译码前需要经过奇偶校验机制逐次删除错误编码包;2)检验出错的编码包,在产生误码扩散之前会被删除。

为检测LT-PC码的检错能力,对提出的LT-PC码进行单个编码包出错的仿真测试,编码时采用文献[ 31]中定义的度分布函数,并添加奇偶校验码进行校验。

设LT码编码包个数k=512,码长250 Byte,译码开销为1%,接收端采用BP译码。实验1:随机置错一个参与译码的编码包,译码完成后进行对比,记录每次测试译出的错误源数据包数目,假设测试进行1000次;实验2:随机选取不足1%的源数据包经过LT编码器进行编码,然后每个编码包经过奇偶校验码进行校验,校验后的编码包参与译码,译码完成后进行对比,记录每次测试出现错误的编码包数目,假设进行5组测试,每次测试进行1000次。

对于实验1,测试中译出的错误编码包数目的范围为0~500,其中0~100发生概率为70%,100~200发生概率为19.8%,200~300发生概率为8.2%,300~400发生概率为1.9%,400~500发生概率为0.1%;对于实验2,测试每组中错误编码包在LT编码生成的整个编码包中的比例,第1组的错误率为0.49%,第2组的错误率为0.24%,第3组的错误率为0.34%,第4组的错误率为0.12%,第5组的错误率为0.43%。

从实验1中可以看出即使是单个编码包出错也会导致严重的误码扩散,且译出的错误源数据包数量分布呈集中趋势,其中0~100个源数据包出错的情况占大多数,而误码扩散严重时可达源数据包数目的70%左右,因此,如果在关键的数据中出现很小的错误,也很可能会引起严重的译码错误;从实验2中可以看出在成功译码的前提下,算法对于单个错误编码包校验后的出错率小于0.5%,因为此时的检错性能仅取决于奇偶校验码自身的性能,而采用的奇偶校验码尽管有很高的检错性能,但校验码设计本身对数据出错校验存在小概率漏检缺陷,只能检测码元中奇数个错误,从而导致在成功译出源包的前提下,仍然存在一定的检错失败概率。

同时通过仿真给出LT码与LT-PC码的译码成功率和译码开销之间的关系。

本次实验中LT码编码包个数k分别为500、1000,码长250 Byte,其中LT码采用的度分布Ω(d)为鲁棒孤子分布(δ=0.05,c=0.03)[16],则译码开销可表示为

ε=(n-k)/n,(8)

式中n为发送端发送的编码包个数。

根据文献[ 33]相关公式推导度为d编码包译码的成功概率:

PS=i=dkΩin!(n-d)!(k-n)![k-n-(i-d)]!k!(k-i)!,(9)

式中i为BP迭代译码次数,其中i=1,2,…,d

图4为LT码与LT-PC码在k=500和k=1000时的译码开销与译码成功率的关系。从图4可以看出,后者的性能明显要优于前者。当编码包个数k增加时,LT-PC码的译码成功率增加幅度较大;当0≤ε<0.5时,LT-PC码的译码成功率要高于LT码的译码成功率。在LT码编码包后增加校验位会使码长增加运算开销,但不超过1%。因此只需ε不超过0.5,即可提升译码成功率。

图 4. 译码开销与译码成功率的关系图

Fig. 4. Relationship between decoding overhead and successful decoding rate

下载图片 查看所有图片

4 仿真结果

发射激光的波长为1550 nm,信道模型服从Gamma-Gamma分布,考虑文献[ 34-36]中MIMO-FSO系统的遍历容量以及系统复杂性,选取的天线为2×2、3×3,讨论不同湍流环境下LT码和LT-PC码的误码性能。仿真参数设置如表1所示。

表 1. 大气湍流仿真参数

Table 1. Atmospheric turbulence simulation parameters

Turbulence environmentCn2 /m-2/3δ2αβ
Weak6.0×10-160.38.437.30
Strong2×10-142.14.122.42

查看所有表

图5为不同湍流环境下通信距离L=1000 m时LT码与LT-PC码的误码性能比较图,根据(6)式以及LT码与LT-PC码的译码成功率进行仿真。从图5(a)可以看出,在弱湍流环境下,随着信噪比的逐渐增大,误码率曲线均呈现下降趋势,相比于天线个数为2×2的系统,天线个数为3×3的系统有大约3 dB的编码增益;当天线个数为2×2、BER为10-5左右时,LT-PC码相对LT码具有编码增益,约为0.4 dB,而当天线个数为3×3、BER为10-5左右时,两者间的编码增益约为0.5 dB。从图5(b)可以看出,相比于弱湍流情形下,强湍流环境时的BER曲线下降趋势较平缓,两个系统间的编码增益大约为4 dB,当天线个数为2×2、BER为10-5左右时,相比于LT码,LT-PC码有约为1.2 dB的编码增益,而当天线个数为3×3、BER为10-5左右时,两者间的编码增益约为2 dB。分析图5可知,未校验的编码包与经过校验的编码包通过弱湍流信道后,由于弱湍流信道中湍流效应较小,导致编码包出错的可能性较小,译码过程中误码扩散现象出现概率较低,所以两者间的编码增益相差不大;而未校验的编码包与经过校验的编码包通过强湍流信道后,由于强湍流信道中湍流效应较大,导致编码包出错的概率较大,译码过程中误码扩散现象出现概率较高,但经过校验的编码包在通过强湍流信道之前,较大程度地删除这些编码包中出错的编码包,降低了在通过强湍流信道后编码包出错的概率,有效遏制误码扩散的产生,因此两者间的编码增益相差较大。

图 5. LT码与LT-PC码的性能比较。(a)弱湍流;(b)强湍流

Fig. 5. Performance comparison of LT codes and LT-PC codes. (a) Weak turbulence; (b) strong turbulence

下载图片 查看所有图片

图6为强湍流环境下通信距离L与不同系统的误码率曲线图,此时信噪比为12 dB,由 (4)式和(5)式可求得αβ,通信距离L范围为1~3 km。从图6可以看出,随着L的增大,αβ值逐渐减小,同时系统误码率也逐渐增大;相比于天线个数为2×2的系统,天线个数为3×3的系统误码率曲线上升趋势较大;当天线个数相同时,相比于LT码,LT-PC码有较小的编码增益优势。这表明,MIMO-FSO系统的通信距离越长,经过校验的编码包通过强湍流信道后,出错的概率越高,译码过程中误码扩散的概率也越高,从而导致MIMO-FSO系统误码率增大,该系统的通信性能下降。

图 6. 强湍流环境下通信距离与误码率的关系曲线图

Fig. 6. Relationship between communication distance and BER in strong turbulence

下载图片 查看所有图片

5 结论

本文将LT-PC码应用于MIMO-FSO系统,结合奇偶校验码校验机制,通过对错误的编码包进行定位、删除来遏制误码扩散,提高译码成功率,降低MIMO-FSO系统误码率,同时比较不同组数天线条件下通信距离对于系统误码率的影响。仿真结果表明:同一湍流环境下,相比于天线个数为2×2的系统,天线个数为3×3的系统有较大的编码增益,且采用LT-PC码后,编码增益有较小的提升;在强湍流环境下,当天线个数相同时,随着通信距离的增大,相比于LT码,LT-PC码仍有一定的编码增益优势。因此,LT-PC码能降低误码扩散发生概率,从而保证MIMO-FSO系统的可靠性。LT-PC码仅能检测出奇数个错误的编码包,MIMO-FSO系统性能仍有提升的空间,下一步的工作是寻找更好的检错码。

参考文献

[1] Fidler F, Knapek M, Horwath J, et al. Optical communications for high altitude platforms[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1058-1070.

    Fidler F, Knapek M, Horwath J, et al. Optical communications for high altitude platforms[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1058-1070.

    Fidler F, Knapek M, Horwath J, et al. Optical communications for high altitude platforms[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5): 1058-1070.

[2] Walther FG, MichaelS, Parenti RR, et al. Air-to-ground lasercom system demonstration design overview and results summary[C]. SPIE, 2010, 7814: 78140Y.

    Walther FG, MichaelS, Parenti RR, et al. Air-to-ground lasercom system demonstration design overview and results summary[C]. SPIE, 2010, 7814: 78140Y.

    Walther FG, MichaelS, Parenti RR, et al. Air-to-ground lasercom system demonstration design overview and results summary[C]. SPIE, 2010, 7814: 78140Y.

[3] Usman M, Yang H C, Alouini M S. Practical switching-based hybrid FSO/RF transmission and its performance analysis[J]. IEEE Photonics Journal, 2014, 6(5): 7902713.

    Usman M, Yang H C, Alouini M S. Practical switching-based hybrid FSO/RF transmission and its performance analysis[J]. IEEE Photonics Journal, 2014, 6(5): 7902713.

    Usman M, Yang H C, Alouini M S. Practical switching-based hybrid FSO/RF transmission and its performance analysis[J]. IEEE Photonics Journal, 2014, 6(5): 7902713.

[4] 陈纯毅, 杨华民, 姜会林, 等. 大气信道部分相干光通信链路性能分析与优化[J]. 电子学报, 2009, 37(8): 1869-1872.

    陈纯毅, 杨华民, 姜会林, 等. 大气信道部分相干光通信链路性能分析与优化[J]. 电子学报, 2009, 37(8): 1869-1872.

    陈纯毅, 杨华民, 姜会林, 等. 大气信道部分相干光通信链路性能分析与优化[J]. 电子学报, 2009, 37(8): 1869-1872.

    Chen C Y, Yang H M, Jiang H L, et al. Performance analysis and optimization of partially coherent optical communication links through atmospheric channel[J]. Acta Electronica Sinica, 2009, 37(8): 1869-1872.

    Chen C Y, Yang H M, Jiang H L, et al. Performance analysis and optimization of partially coherent optical communication links through atmospheric channel[J]. Acta Electronica Sinica, 2009, 37(8): 1869-1872.

    Chen C Y, Yang H M, Jiang H L, et al. Performance analysis and optimization of partially coherent optical communication links through atmospheric channel[J]. Acta Electronica Sinica, 2009, 37(8): 1869-1872.

[5] 胡青松, 黄玉划, 王俊波, 等. 强湍流下多跳自由空间光通信的性能分析[J]. 光学学报, 2013, 33(9): 0906004.

    胡青松, 黄玉划, 王俊波, 等. 强湍流下多跳自由空间光通信的性能分析[J]. 光学学报, 2013, 33(9): 0906004.

    胡青松, 黄玉划, 王俊波, 等. 强湍流下多跳自由空间光通信的性能分析[J]. 光学学报, 2013, 33(9): 0906004.

    Hu Q S, Huang Y H, Wang J B, et al. Performance analysis of multi-hop free space optics over strong turbulence[J]. Acta Optica Sinica, 2013, 33(9): 0906004.

    Hu Q S, Huang Y H, Wang J B, et al. Performance analysis of multi-hop free space optics over strong turbulence[J]. Acta Optica Sinica, 2013, 33(9): 0906004.

    Hu Q S, Huang Y H, Wang J B, et al. Performance analysis of multi-hop free space optics over strong turbulence[J]. Acta Optica Sinica, 2013, 33(9): 0906004.

[6] 韩立强, 游雅晖. 大气湍流以及瞄准误差联合效应下自由空间光通信的性能[J]. 光学学报, 2014, 34(11): 1106005.

    韩立强, 游雅晖. 大气湍流以及瞄准误差联合效应下自由空间光通信的性能[J]. 光学学报, 2014, 34(11): 1106005.

    韩立强, 游雅晖. 大气湍流以及瞄准误差联合效应下自由空间光通信的性能[J]. 光学学报, 2014, 34(11): 1106005.

    Han L Q, You Y H. Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors[J]. Acta Optica Sinica, 2014, 34(11): 1106005.

    Han L Q, You Y H. Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors[J]. Acta Optica Sinica, 2014, 34(11): 1106005.

    Han L Q, You Y H. Performance of free space optical communication with combined effects from atmospheric turbulence and pointing errors[J]. Acta Optica Sinica, 2014, 34(11): 1106005.

[7] Ibrahim M M, Ibrahim A M. Performance analysis of optical receivers with space diversity reception[J]. IEE Proceedings-Communications, 1996, 143(6): 369-372.

    Ibrahim M M, Ibrahim A M. Performance analysis of optical receivers with space diversity reception[J]. IEE Proceedings-Communications, 1996, 143(6): 369-372.

    Ibrahim M M, Ibrahim A M. Performance analysis of optical receivers with space diversity reception[J]. IEE Proceedings-Communications, 1996, 143(6): 369-372.

[8] Navidpour S M, Uysal M, Kavehrad M. BER performance of free-space optical transmission with spatial diversity[J]. IEEE Transactions on Wireless Communications, 2007, 6(8): 2813-2819.

    Navidpour S M, Uysal M, Kavehrad M. BER performance of free-space optical transmission with spatial diversity[J]. IEEE Transactions on Wireless Communications, 2007, 6(8): 2813-2819.

    Navidpour S M, Uysal M, Kavehrad M. BER performance of free-space optical transmission with spatial diversity[J]. IEEE Transactions on Wireless Communications, 2007, 6(8): 2813-2819.

[9] Tsiftsis T A, Sandalidis H G, Karagiannidis G K, et al. Optical wireless links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 951-957.

    Tsiftsis T A, Sandalidis H G, Karagiannidis G K, et al. Optical wireless links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 951-957.

    Tsiftsis T A, Sandalidis H G, Karagiannidis G K, et al. Optical wireless links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 951-957.

[10] Qin M, Chen L, Wang W D. Generalized selection multiuser scheduling for the MIMO FSO communication system and its performance analysis[J]. IEEE Photonics Journal, 2016, 8(5): 7906609.

    Qin M, Chen L, Wang W D. Generalized selection multiuser scheduling for the MIMO FSO communication system and its performance analysis[J]. IEEE Photonics Journal, 2016, 8(5): 7906609.

    Qin M, Chen L, Wang W D. Generalized selection multiuser scheduling for the MIMO FSO communication system and its performance analysis[J]. IEEE Photonics Journal, 2016, 8(5): 7906609.

[11] 韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

    韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

    韩立强, 游雅晖. 大气衰减和大气湍流效应下多输入多输出自由空间光通信的性能[J]. 中国激光, 2016, 43(7): 0706004.

    Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.

    Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.

    Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 2016, 43(7): 0706004.

[12] 柯熙政, 杨利红, 葛子叶. FSO MIMO垂直空时分层码研究及硬件仿真[J]. 红外与激光工程, 2010, 39(3): 473-476.

    柯熙政, 杨利红, 葛子叶. FSO MIMO垂直空时分层码研究及硬件仿真[J]. 红外与激光工程, 2010, 39(3): 473-476.

    柯熙政, 杨利红, 葛子叶. FSO MIMO垂直空时分层码研究及硬件仿真[J]. 红外与激光工程, 2010, 39(3): 473-476.

    Ke X Z, Yang L H, Ge Z Y. Vertical Bell Labs layered space-time for FSO MIMO system and hardware simulation[J]. Infrared and Laser Engineering, 2010, 39(3): 473-476.

    Ke X Z, Yang L H, Ge Z Y. Vertical Bell Labs layered space-time for FSO MIMO system and hardware simulation[J]. Infrared and Laser Engineering, 2010, 39(3): 473-476.

    Ke X Z, Yang L H, Ge Z Y. Vertical Bell Labs layered space-time for FSO MIMO system and hardware simulation[J]. Infrared and Laser Engineering, 2010, 39(3): 473-476.

[13] 郝士琦, 冷蛟峰. 基于LDPC码和MIMO的无线光通信系统性能[J]. 中国激光, 2012, 39(s1): s105006.

    郝士琦, 冷蛟峰. 基于LDPC码和MIMO的无线光通信系统性能[J]. 中国激光, 2012, 39(s1): s105006.

    郝士琦, 冷蛟峰. 基于LDPC码和MIMO的无线光通信系统性能[J]. 中国激光, 2012, 39(s1): s105006.

    Hao S Q, Leng J F. Performance analysis of optical wireless communication based on LDPC codes and MIMO[J]. Chinese Journal of Lasers, 2012, 39(s1): s105006.

    Hao S Q, Leng J F. Performance analysis of optical wireless communication based on LDPC codes and MIMO[J]. Chinese Journal of Lasers, 2012, 39(s1): s105006.

    Hao S Q, Leng J F. Performance analysis of optical wireless communication based on LDPC codes and MIMO[J]. Chinese Journal of Lasers, 2012, 39(s1): s105006.

[14] Fan Y J, Lai L F, Erkip E, et al. Rateless coding for MIMO fading channel: Performance limits and code construction[J]. IEEE Transactions on Wireless Communication, 2010, 9(4): 1288-1292.

    Fan Y J, Lai L F, Erkip E, et al. Rateless coding for MIMO fading channel: Performance limits and code construction[J]. IEEE Transactions on Wireless Communication, 2010, 9(4): 1288-1292.

    Fan Y J, Lai L F, Erkip E, et al. Rateless coding for MIMO fading channel: Performance limits and code construction[J]. IEEE Transactions on Wireless Communication, 2010, 9(4): 1288-1292.

[15] 刘世涛, 张勋, 曹阳, 等. LT码在MIMO-FSO系统中的应用研究[J]. 光通信技术, 2016, 40(12): 49-51.

    刘世涛, 张勋, 曹阳, 等. LT码在MIMO-FSO系统中的应用研究[J]. 光通信技术, 2016, 40(12): 49-51.

    刘世涛, 张勋, 曹阳, 等. LT码在MIMO-FSO系统中的应用研究[J]. 光通信技术, 2016, 40(12): 49-51.

    Liu Shitao, Zhang Xun, Cao Yang, et al. Research on the application of LT code in MIMO-FSO system[J]. Optical Communication Technology, 2016, 40(12): 49-51.

    Liu Shitao, Zhang Xun, Cao Yang, et al. Research on the application of LT code in MIMO-FSO system[J]. Optical Communication Technology, 2016, 40(12): 49-51.

    Liu Shitao, Zhang Xun, Cao Yang, et al. Research on the application of LT code in MIMO-FSO system[J]. Optical Communication Technology, 2016, 40(12): 49-51.

[16] LubyM. LT codes[C]//Proceedings of 43rd Annual IEEE Symposium on Foundations of Computer Science(FOCS'02), 2002: 271- 280.

    LubyM. LT codes[C]//Proceedings of 43rd Annual IEEE Symposium on Foundations of Computer Science(FOCS'02), 2002: 271- 280.

    LubyM. LT codes[C]//Proceedings of 43rd Annual IEEE Symposium on Foundations of Computer Science(FOCS'02), 2002: 271- 280.

[17] Mackay D J. Fountain codes[J]. IEEE Proceedings-Communications, 2005, 152(6): 1062-1068.

    Mackay D J. Fountain codes[J]. IEEE Proceedings-Communications, 2005, 152(6): 1062-1068.

    Mackay D J. Fountain codes[J]. IEEE Proceedings-Communications, 2005, 152(6): 1062-1068.

[18] 夏丹. 空间光通信中基于MIMO的空时编码技术研究[D]. 长春: 长春理工大学, 2014.

    夏丹. 空间光通信中基于MIMO的空时编码技术研究[D]. 长春: 长春理工大学, 2014.

    夏丹. 空间光通信中基于MIMO的空时编码技术研究[D]. 长春: 长春理工大学, 2014.

    XiaD. Research on space-time coding based on MIMO in optical communication[D]. Changchun: Changchun University of Science and Technology, 2014.

    XiaD. Research on space-time coding based on MIMO in optical communication[D]. Changchun: Changchun University of Science and Technology, 2014.

    XiaD. Research on space-time coding based on MIMO in optical communication[D]. Changchun: Changchun University of Science and Technology, 2014.

[19] 曹明华, 王惠琴, 黄瑞, 等. FSO中分层空时编码的误码性能[J]. 红外与激光工程, 2012, 41(7): 1842-1847.

    曹明华, 王惠琴, 黄瑞, 等. FSO中分层空时编码的误码性能[J]. 红外与激光工程, 2012, 41(7): 1842-1847.

    曹明华, 王惠琴, 黄瑞, 等. FSO中分层空时编码的误码性能[J]. 红外与激光工程, 2012, 41(7): 1842-1847.

    Cao M H, Wang H Q, Huang R, et al. BER performance of layered space time code in FSO[J]. Infrared and Laser Engineering, 2012, 41(7): 1842-1847.

    Cao M H, Wang H Q, Huang R, et al. BER performance of layered space time code in FSO[J]. Infrared and Laser Engineering, 2012, 41(7): 1842-1847.

    Cao M H, Wang H Q, Huang R, et al. BER performance of layered space time code in FSO[J]. Infrared and Laser Engineering, 2012, 41(7): 1842-1847.

[20] Heath R, Paulraj A. Diversity versus multiplexing in narrow-band MIMO channels: A tradeoff based on Euclidian distance[J]. IEEE Transactions on Communications, 2002, 12: 1-26.

    Heath R, Paulraj A. Diversity versus multiplexing in narrow-band MIMO channels: A tradeoff based on Euclidian distance[J]. IEEE Transactions on Communications, 2002, 12: 1-26.

    Heath R, Paulraj A. Diversity versus multiplexing in narrow-band MIMO channels: A tradeoff based on Euclidian distance[J]. IEEE Transactions on Communications, 2002, 12: 1-26.

[21] 李菲, 吴毅, 侯再红. 湍流大气光通信系统误码率分析与实验报告[J]. 光学学报, 2012, 32(6): 0606002.

    李菲, 吴毅, 侯再红. 湍流大气光通信系统误码率分析与实验报告[J]. 光学学报, 2012, 32(6): 0606002.

    李菲, 吴毅, 侯再红. 湍流大气光通信系统误码率分析与实验报告[J]. 光学学报, 2012, 32(6): 0606002.

    Li F, Wu Y, Hou Z H. Analysis and experimental research on bit error rate for free-space optical communication systems through turbulent environment[J]. Acta Optica Sinica, 2012, 32(6): 0606002.

    Li F, Wu Y, Hou Z H. Analysis and experimental research on bit error rate for free-space optical communication systems through turbulent environment[J]. Acta Optica Sinica, 2012, 32(6): 0606002.

    Li F, Wu Y, Hou Z H. Analysis and experimental research on bit error rate for free-space optical communication systems through turbulent environment[J]. Acta Optica Sinica, 2012, 32(6): 0606002.

[22] 陈丹, 柯熙政. 基于Turbo码的无线光通信副载波误码性能分析[J]. 光学学报, 2010, 30(10): 2859-2863.

    陈丹, 柯熙政. 基于Turbo码的无线光通信副载波误码性能分析[J]. 光学学报, 2010, 30(10): 2859-2863.

    陈丹, 柯熙政. 基于Turbo码的无线光通信副载波误码性能分析[J]. 光学学报, 2010, 30(10): 2859-2863.

    Chen D, Ke X Z. Analysis on error rate of wireless optical communication using subcarrier modulation on turbo code[J]. Acta Optica Sinica, 2010, 30(10): 2859-2863.

    Chen D, Ke X Z. Analysis on error rate of wireless optical communication using subcarrier modulation on turbo code[J]. Acta Optica Sinica, 2010, 30(10): 2859-2863.

    Chen D, Ke X Z. Analysis on error rate of wireless optical communication using subcarrier modulation on turbo code[J]. Acta Optica Sinica, 2010, 30(10): 2859-2863.

[23] Zhu X M, Kahn J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2002, 50(8): 1293-1300.

    Zhu X M, Kahn J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2002, 50(8): 1293-1300.

    Zhu X M, Kahn J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2002, 50(8): 1293-1300.

[24] Kiasaleh K. Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence[J]. IEEE Transactions on Communications, 2005, 53(9): 1455-1461.

    Kiasaleh K. Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence[J]. IEEE Transactions on Communications, 2005, 53(9): 1455-1461.

    Kiasaleh K. Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence[J]. IEEE Transactions on Communications, 2005, 53(9): 1455-1461.

[25] Uysal M, Li J, Yu M. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2006, 5(6): 1229-1233.

    Uysal M, Li J, Yu M. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2006, 5(6): 1229-1233.

    Uysal M, Li J, Yu M. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2006, 5(6): 1229-1233.

[26] Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.

    Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.

    Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.

[27] Henniger H, Wilfert O. An introduction to free-space optical communications[J]. Radio Engineering, 2010, 19(2): 203-212.

    Henniger H, Wilfert O. An introduction to free-space optical communications[J]. Radio Engineering, 2010, 19(2): 203-212.

    Henniger H, Wilfert O. An introduction to free-space optical communications[J]. Radio Engineering, 2010, 19(2): 203-212.

[28] Nistazakis H E, Tombras G S, Tsigopoulos A D, et al. Capacity estimation of optical wireless communication systems over moderate to strong turbulence channel[J]. Journal of Communications and Networks, 2009, 11(4): 384-389.

    Nistazakis H E, Tombras G S, Tsigopoulos A D, et al. Capacity estimation of optical wireless communication systems over moderate to strong turbulence channel[J]. Journal of Communications and Networks, 2009, 11(4): 384-389.

    Nistazakis H E, Tombras G S, Tsigopoulos A D, et al. Capacity estimation of optical wireless communication systems over moderate to strong turbulence channel[J]. Journal of Communications and Networks, 2009, 11(4): 384-389.

[29] Petkovic M I, Djordjevic G T, et al. . Outage analysis of mixed FSO/WiMAX link[J]. IEEE Photonics Journal, 2016, 8(1): 1-14.

    Petkovic M I, Djordjevic G T, et al. . Outage analysis of mixed FSO/WiMAX link[J]. IEEE Photonics Journal, 2016, 8(1): 1-14.

    Petkovic M I, Djordjevic G T, et al. . Outage analysis of mixed FSO/WiMAX link[J]. IEEE Photonics Journal, 2016, 8(1): 1-14.

[30] 邓鹏. 新型部分相干光束及其在湍流大气中的传输特性研究[D]. 武汉: 华中科技大学, 2013.

    邓鹏. 新型部分相干光束及其在湍流大气中的传输特性研究[D]. 武汉: 华中科技大学, 2013.

    邓鹏. 新型部分相干光束及其在湍流大气中的传输特性研究[D]. 武汉: 华中科技大学, 2013.

    DengP. Studies of novel partially coherent beams propagation through turbulent atmosphere[D]. Wuhan: Huazhong University of Science & Technology, 2013.

    DengP. Studies of novel partially coherent beams propagation through turbulent atmosphere[D]. Wuhan: Huazhong University of Science & Technology, 2013.

    DengP. Studies of novel partially coherent beams propagation through turbulent atmosphere[D]. Wuhan: Huazhong University of Science & Technology, 2013.

[31] 邢艳玲, 裴玉奎, 葛宁. 具有检错容错能力的LT码编译码算法[J]. 清华大学学报(自然科学版), 2013, 25(7): 931-935.

    邢艳玲, 裴玉奎, 葛宁. 具有检错容错能力的LT码编译码算法[J]. 清华大学学报(自然科学版), 2013, 25(7): 931-935.

    邢艳玲, 裴玉奎, 葛宁. 具有检错容错能力的LT码编译码算法[J]. 清华大学学报(自然科学版), 2013, 25(7): 931-935.

    Xing Y L, Pei Y K, Ge N. LT coding and decoding algorithm with error detection and tolerance ability[J]. Journal of Tsinghua University(Science and Technology), 2013, 25(7): 931-935.

    Xing Y L, Pei Y K, Ge N. LT coding and decoding algorithm with error detection and tolerance ability[J]. Journal of Tsinghua University(Science and Technology), 2013, 25(7): 931-935.

    Xing Y L, Pei Y K, Ge N. LT coding and decoding algorithm with error detection and tolerance ability[J]. Journal of Tsinghua University(Science and Technology), 2013, 25(7): 931-935.

[32] 威廉·E·瑞恩, 林舒. 信道编码: 经典与现代[M]. 白宝明, 马啸, 译. 北京: 电子工业出版社, 2017: 33- 35.

    威廉·E·瑞恩, 林舒. 信道编码: 经典与现代[M]. 白宝明, 马啸, 译. 北京: 电子工业出版社, 2017: 33- 35.

    威廉·E·瑞恩, 林舒. 信道编码: 经典与现代[M]. 白宝明, 马啸, 译. 北京: 电子工业出版社, 2017: 33- 35.

    Ryan WE, LinS. Channel codes: Classical mondern[M]. Bai B M, Ma X, Transl. Beijing: Publishing House of Electronic Industry, 2017: 33- 35.

    Ryan WE, LinS. Channel codes: Classical mondern[M]. Bai B M, Ma X, Transl. Beijing: Publishing House of Electronic Industry, 2017: 33- 35.

    Ryan WE, LinS. Channel codes: Classical mondern[M]. Bai B M, Ma X, Transl. Beijing: Publishing House of Electronic Industry, 2017: 33- 35.

[33] 焦健, 张钦宇, 李安国. 面向深空通信的喷泉编码技术[J]. 宇航学报, 2010, 31(4): 1156-1161.

    焦健, 张钦宇, 李安国. 面向深空通信的喷泉编码技术[J]. 宇航学报, 2010, 31(4): 1156-1161.

    焦健, 张钦宇, 李安国. 面向深空通信的喷泉编码技术[J]. 宇航学报, 2010, 31(4): 1156-1161.

    Jiao J, Zhang Q Y, Li A G. A method of concatenated fountain codes in deep space communication[J]. Journal of Astronautics, 2010, 31(4): 1156-1161.

    Jiao J, Zhang Q Y, Li A G. A method of concatenated fountain codes in deep space communication[J]. Journal of Astronautics, 2010, 31(4): 1156-1161.

    Jiao J, Zhang Q Y, Li A G. A method of concatenated fountain codes in deep space communication[J]. Journal of Astronautics, 2010, 31(4): 1156-1161.

[34] Luong DA, Pham AT. Average capacity of MIMO free-space optical gamma-gamma fading channel[C]. 2014 IEEE International Conference on Communications (ICC), 2014: 3354- 3358.

    Luong DA, Pham AT. Average capacity of MIMO free-space optical gamma-gamma fading channel[C]. 2014 IEEE International Conference on Communications (ICC), 2014: 3354- 3358.

    Luong DA, Pham AT. Average capacity of MIMO free-space optical gamma-gamma fading channel[C]. 2014 IEEE International Conference on Communications (ICC), 2014: 3354- 3358.

[35] KaurP, Jain VK, KarS. Capacity of free space optical links with spatial diversity and aperture averaging[C]. 27th Biennial Symposium on Communications (QBSC), 2014: 14- 18.

    KaurP, Jain VK, KarS. Capacity of free space optical links with spatial diversity and aperture averaging[C]. 27th Biennial Symposium on Communications (QBSC), 2014: 14- 18.

    KaurP, Jain VK, KarS. Capacity of free space optical links with spatial diversity and aperture averaging[C]. 27th Biennial Symposium on Communications (QBSC), 2014: 14- 18.

[36] Alimi I, Shahpari A, Ribeiro V, et al. Channel characterization and empirical model for ergodic capacity of free-space optical communication link[J]. Optics Communications, 2017, 390: 123-129.

    Alimi I, Shahpari A, Ribeiro V, et al. Channel characterization and empirical model for ergodic capacity of free-space optical communication link[J]. Optics Communications, 2017, 390: 123-129.

    Alimi I, Shahpari A, Ribeiro V, et al. Channel characterization and empirical model for ergodic capacity of free-space optical communication link[J]. Optics Communications, 2017, 390: 123-129.

曹阳, 张勋, 彭小峰, 任发韬. 空间光通信中基于多输入多输出的级联码方案研究[J]. 光学学报, 2018, 38(1): 0106003. Yang Cao, Xun Zhang, Xiaofeng Peng, Fatao Ren. Cascade Scheme Based on Multiple-Input Multiple-Output in Spatial Optical Communication[J]. Acta Optica Sinica, 2018, 38(1): 0106003.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!