光学 精密工程, 2012, 20 (3): 563, 网络出版: 2012-04-16   

基于滑模扰动观测器的磁轴承主动振动控制

Vibration suppression of magnetic bearing based on sliding mode disturbance observer
作者单位
北京航空航天大学 仪器科学与光电工程学院 惯性技术国家级重点实验室,北京 100191
摘要
由于磁悬浮控制力矩陀螺转子的不平衡振动会造成控制力矩陀螺系统的同频扰动,影响卫星姿态控制精度与卫星载荷精度,本文提出了基于滑模变结构扰动观测器的磁轴承主动振动控制方法。首先,对不平衡扰动力和力矩作用下的磁轴承-转子系统进行建模;接着,设计了滑模变结构扰动观测器观测不平衡扰动力和力矩;然后,利用跟踪微分器估计位移传感器输出信号的微分获取速度信号,降低观测器的阶数;最后,将滑模扰动观测器的输出引入磁轴承控制器,对观测得到的同频不平衡扰动力和力矩进行补偿。仿真和试验结果均表明,设计的滑模变结构观测器实现了对不平衡扰动的观测,通过控制器有效地实现了对不平衡扰动的补偿,减少了72%的同频振动。
Abstract
As rotor imbalance can lead to the synchronous disturbances of Magnetically Suspended Control Moment Gyroscopes (MSCMG), and can reduce the attitude control accuracy and the load accuracy of spacecrafts, A general control strategy based on a sliding mode disturbance observer was proposed to minimize the synchronous vibration caused by unbalance on a rotor. First, a dynamics model of the magnetic bearing-rotor system was set up and the sliding mode observer used for disturbance observation was designed. Then, a Tracking Differentiator (TD) was used to estimate the differential signals from a displacement sensor to obtain the velocity signals and to reduce orders of the observer. Finally, according to the synchronous force estimated by the disturbance observer, a controller was designed to compensate the vibration caused by unbalance of the rotor. Simulation and experimental results demonstrate the effectiveness of the proposed approach and the vibration has been decreased by 72%.
参考文献

[1] 韩邦成, 虎刚, 房建成,等. 磁悬浮控制力矩陀螺高速转子的优化设计[J]. 光学 精密工程, 2006, 14(4): 662-666.

    HAN B CH, HU G, FANG J CH, et al.. Optimization design of magnetic suspended gyroscope rotor [J]. Opt. Precision Eng., 2006, 14(4): 662-666.(in Chinese)

[2] 宋文荣, 陈阳, 宋晓东, 等. 磁悬浮进给机构的磁力耦合[J]. 光学 精密工程, 2004, 12(4): 411-414.

    SONG W R, CHEN Y, SONG X D, et al.. Magnetic force coupling in maglev feeding mechanism [J]. Opt. Precision Eng., 2004, 12(4): 411-414.(in Chinese)

[3] 刘彬, 房建成, 刘刚,等. 基于TMS320C6713+FPGA数字控制器实现磁悬浮飞轮主动振动控制[J]. 光学 精密工程, 2009, 17(1): 151-157.

    LIU B, FANG J CH, LIU G, et al.. Implementation of active vibration control for magnetically suspended flywheels based on TMS320C6713B+FPGA digital controller [J]. Opt. Precision Eng., 2009, 17(1): 151-157.(in Chinese)

[4] 刘彬, 房建成, 刘刚, 等. 磁悬浮飞轮不平衡振动控制方法与试验研究[J]. 机械工程学报, 2010, 46(12):188-194.

    LIU B, FANG J CH, LIU G, et al.. Unbalance vibration control and experiment research of magnetically suspended flywheels [J]. Chinese Journal of Mechanical Engineering, 2010, 46(12): 188-194.(in Chinese)

[5] SETIAWAN D, MUKHERJEE R, MASLEN H. Synchronous disturbance compensation in active magnetic bearings using bias current excitation [C]. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy, 2001: 707-712.

[6] NEZAMABADI R, POSHTAN J, JAHED MOTLAGH M R. Robust control design to imbalance compensation and automatic balancing of magnetic bearings [C]. Proceedings of the IEEE International Conference on Industrial Technology, Mumbai, India,2006: 1093-1098.

[7] BI C, WU D Z, JIANG Q, et al.. Automatic learning control for unbalance compensation in active magnetic bearings [J]. IEEE Transactions on Magnetics,2005, 41(7): 2270-2280.

[8] HERZOG R, BUHLER P, GAHLER C, et al.. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5): 580-586.

[9] LI L, SHINSHI T, LIJIMA C, et al.. Compensation of rotor imbalance for precision rotation of a planar magnetic bearing rotor [J]. Precision Engineering, 2003, 27: 140-150.

[10] 黄晓蔚, 唐钟麟. 电磁轴承系统实现自动平衡的一种新方法[J]. 机械工程学报, 2001, 37(7): 96-99.

    HUANG X W, TANG ZH L. New method for autobalancing with active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2001, 37(7):96-99.(in Chinese)

[11] CHEN X, KOMADA S, FUKUDA T. Design of a nonlinear disturbance observer [J]. IEEE Transaction on Industry Electronics, 2000,47(2):429-437.

[12] HAN J Q. From PID technique to active disturbances rejection control technique [J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.

[13] MIZUNO T, HIGUCHI T. Design of magnetic bearing controllers based on disturbance estimation [C]. The 2nd International Symposium on Magnetic Bearings, Tokyo, Nissei Eblo, 1990:281-288.

[14] 沈钺,孙岩桦,王世琥,等. 磁悬浮飞轮系统陀螺效应的抑制[J]. 西安交通大学学报, 2003, 37(11): 1105-1109.

    SHEN Y, SUN Y H, WANG SH H, et al.. Reduction of gyroscopic effect of a magnetic bearingsupported flywheel system [J]. Academic Journal of Xi’an Jiaotong University, 2003,37(11):1105-1109.(in Chinese)

[15] 韩京清, 袁露林. 跟踪微分器的离散形式[J]. 系统科学与数学, 1999, 19(3): 268-273.

    HAN J Q, YUAN L L. The discrete form of tracking-differentiator [J]. J.Sys.Sci.and Math.Scis., 1999,19(3): 268-273. (in Chinese).

[16] YI X, MEHRDAD S. Sliding-mode observer for uncertain system part I: linear sytem case [C]. Proceeding of the 39th IEEE Conference on Decision and Control, Sydney, 2000:316-321.

[17] 田宏奇. 滑模控制理论及其应用[M]. 武汉:武汉出版社,1995.

    TIAN H Q. Theory and Application of Sliding-modecontrol [M]. Wuhan: Wuhan Press, 1995. (in Chinese)

[18] SIVRIOGLU S. Gain-scheduled H∞ control of active magnetic bearing systems with gyroscopic effect [J]. Transactions of the Japan Society of Mechanical Engineers, 1997, 63(610): 1940-1947.

韩邦成, 崔华, 汤恩琼. 基于滑模扰动观测器的磁轴承主动振动控制[J]. 光学 精密工程, 2012, 20(3): 563. HAN Bang-cheng, CUI Hua, TANG En-qiong. Vibration suppression of magnetic bearing based on sliding mode disturbance observer[J]. Optics and Precision Engineering, 2012, 20(3): 563.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!