激光与光电子学进展, 2017, 54 (9): 091102, 网络出版: 2017-09-06   

双模式复眼成像系统研究 下载: 1018次

Research on Dual-Mode Compound Eye Imaging System
作者单位
中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209
摘要
复眼成像系统具有视场大、体积小、质量轻等优势, 近年来得到国内外的广泛研究, 是光学成像技术未来发展的方向之一。受限于较小的子孔径口径, 现有大视场复眼系统得得分辨率较低, 无法满足遥感、航空侦察等领域的需求。针对上述问题提出了双模式复眼成像系统, 该系统不仅具备传统复眼的多孔径和大视场成像能力, 同时可将所有子孔径指向同一视场, 对采集的多幅子图像进行高分辨重建, 大幅提升了成像分辨率。对该系统的原理和实现方法进行分析, 通过搭建实验装置验证了双模式成像的可行性, 为复眼成像系统发展提供了新的思路。
Abstract
The compound eye imaging system, with such advantages as large field of view (FOV), small size, and light weight, has been extensively studied at home and abroad in recent years, and is one of the future development directions of optical imaging technology. Due to the smaller diameter of the sub-aperture, the existing compound eye system with large FOV is difficult to obtain high resolution images, and therefore cannot meet the requirements in such fields as remote sensing and aerial reconnaissance. To solve these problems, a dual-mode compound eye imaging system is proposed in this paper. This system not only has the imaging capability of multi-aperture and wide FOV as in the conventional compound eye, but also can enhance the imaging resolution significantly while all sub-apertures point at identical direction and the captured sub-images are processed by high resolution reconstruction. The principle and implement method of the system are analyzed. The feasibility of dual-mode imaging is verified by constructing an experimental device, which provides an innovative idea for the development of compound eye imaging system.
参考文献

[1] 郝永平, 李 伦. 仿生复眼结构设计及其成像系统研究新进展[J]. 激光与红外, 2015, 45(12): 1407-1412.

    Hao Yongping, Li Lun. New progress in structure design and imaging systems of artificial compound eye[J]. Laser & Infrared, 2015, 45(12): 1407-1412.

[2] Radtke D, Duparré J, Zeitner U D, et al. Laser lithographic fabrication and characterization of a spherical artificial compound eye[J]. Optics Express, 2007, 15(6): 3067-3077.

[3] Duparré J, Radtke D, Tunnermann A. Spherical artificial compound eye captures real images[C]. SPIE, 2007, 6466: 64660K.

[4] Floreano D, Pericet-Camara R, Viollet S, et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences, 2013, 110(23): 9267-9272.

[5] 沈焕锋, 李平湘, 张良培, 等. 图像超分辨率重建技术与方法综述[J]. 光学技术, 2009, 35(2): 194-199.

    Shen Huanfeng, Li Pingxiang, Zhang Liangpei, et al. Overview on super resolution image reconstruction[J]. Optical Technique, 2009, 35(2): 194-199.

[6] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J]. Applied Optics, 2001, 40(11): 1806-1813.

[7] Kitamura Y, Shogenji R, Yamada K, et al. Reconstruction of a high-resolution image on a compound-eye image-capturing system[J]. Applied Optics, 2004, 43(8): 1719-1727.

[8] Choi K, Schulz T J. Signal-processing approaches for image-resolution restoration for TOMBO imagery[J]. Applied Optics, 2008, 47(10): B104-B116.

[9] 张锐娟, 张建奇, 杨 翠. 基于SURF的图像配准方法研究[J]. 红外与激光工程, 2009, 38(1): 160-165.

    Zhang Ruijuan, Zhang Jianqi, Yang Cui. Image registration approach based on SURF[J]. Infrared and Laser Engineering, 2009, 38(1): 160-165.

[10] 高 源. 平面复眼空间分辨率增强技术研究[D]. 成都: 光电技术研究所, 2015: 8-23.

    Gao Yuan. Spatial resolution enhancement technology of flat compound-eye imaging systems[D]. Chengdu: Institute of Optics and Electronics, 2015: 8-23.

[11] Barrett H H, Myers K J. Foundations of image science[M]. New York: Wiley Interscience, 2004.

[12] 赵 慧, 姜志国, 赵丹培, 等. 序列图像超分辨率联合重建算法[J]. 飞行器测控学报, 2009, 28(5): 45-49.

    Zhao Hui, Jiang Zhiguo, Zhao Danpei, et al. Sequence of images super-resolution joint reconstruction algorithms[J]. Journal of Spacecraft TT&C Technology, 2009, 28(5): 45-49.

[13] 吕成淮, 何小海, 陶青川, 等. 图像复原中高斯点扩展函数参数估计算法研究[J]. 计算机工程与应用, 2007, 43(10): 31-34.

    Lü Chenghuai, He Xiaohai, Tao Qingchuan, et al. Research on estimation algorithms for Gaussian point spread function parameter in image restoration[J]. Computer Engineering and Applications, 2007, 43(10): 31-34.

[14] 陈起行, 何 斌, 王俊琦. 刃边法边缘扩散函数最优提取方法[J]. 激光与光电子学进展, 2015, 52(11): 111003.

    Chen Qihang, He Bin, Wang Junqi. Optimal extraction for edge spread function in knife-edge method[J]. Laser & Optoelectronics Progress, 2015, 52(11): 111003.

[15] 肖 宿, 韩国强, 沃 焱. 数字图像超分辨率重建技术综述[J]. 计算机科学, 2009, 36(12): 8-13.

    Xiao Su, Han Guoqiang, Wo Yan. Survey of digital image super resolution reconstruction technology[J]. Computer Science, 2009, 36(12): 8-13.

[16] 胡志刚, 花向红. 利用最优正则化方法确定Tikhonov正则化参数[J]. 测绘科学, 2010, 35(2): 51-53.

    Hu Zhigang, Hua Xianghong. Deriving Tikhonov parameter using optimal regularization method[J]. Science of Surveying and Mapping, 2010, 35(2): 51-53.

[17] 胡江涛, 黄 峰, 张 雏, 等. 超分辨率重构复眼成像技术的研究进展[J]. 激光技术, 2015, 39(4): 492-496.

    Hu Jiangtao, Huang Feng, Zhang Chu, et al. Research status of super resolution reconstruction based on compound-eye imaging technology[J]. Laser Technology, 2015, 39(4): 492-496.

[18] 李亚鹏, 何 斌. 采用CCD错位成像技术提高图像质量[J]. 光学学报, 2015, 35(2): 0211001.

    Li Yapeng, He Bin. Improving image quality by using CCD subpixel imaging[J]. Acta Optica Sinica, 2015, 35(2): 0211001.

[19] 徐少雄, 陈长征, 孙 斌, 等. 双线阵CCD错位采样高分辨成像[J]. 中国激光, 2015, 42(9): 0908002.

    Xu Shaoxiong, Chen Changzheng, Sun Bin, et al. High-resolution imaging by bi-linear CCD shifting sampling[J]. Chinese J Lasers, 2015, 42(9): 0908002.

[20] 陈继华, 郭文松. 基于摄影经纬仪的全景图像拼接方法[J]. 激光与光电子学进展, 2016, 53(5): 051001.

    Chen Jihua, Guo Wensong. Method of panoramic image stitching for theodolite-camera system[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051001.

许盟, 王彦钦, 王长涛, 李军辉, 罗先刚. 双模式复眼成像系统研究[J]. 激光与光电子学进展, 2017, 54(9): 091102. Xu Meng, Wang Yanqin, Wang Changtao, Li Junhui, Luo Xiangang. Research on Dual-Mode Compound Eye Imaging System[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091102.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!