激光技术, 2018, 42 (5): 617, 网络出版: 2018-09-11   

基于粒子群优化算法的透射滤光片设计

Design of transmittance filters based on particle swarm optimization algorithm
作者单位
上海交通大学 薄膜与微细技术教育部重点实验室,上海 200240
摘要
为了优化器件的结构参量, 把光栅结构的周期、高度、占空比作为优化的粒子, 采用粒子群优化算法和严格耦合波分析算法, 对粒子群中粒子的适应值进行了比较, 对金属-介质光栅滤光片结构进行了理论分析和仿真优化, 在一定范围内找到最优参量。结果表明, 根据MATLAB仿真结果进行优化, 得到周期为0.300μm, 金属光栅厚度为0.035μm, 介质光栅厚度为0.400μm, 光栅占空比为0.77; 在TM光垂直入射时, 该结构对波长为0.65μm的红光透射率达到80.27%, 旁带透射效率不超过15%; 该结构实现了特定波长光的高效透射, 从而实现了滤光。该结构为亚波长光栅的设计、制备研究和实际应用提供了参考。
Abstract
In order to optimize the structure parameters of the device, the period, height and duty ratio of grating structure were taken as the optimized particles. By using particle swarm optimization algorithm and rigorous coupled wave analysis algorithm, fitness values of the particles in particle swarm were compared. After theoretical analysis and simulative optimization of the structure of metal-medium grating filter, the optimal parameters were found in a certain range. The results show that, according to MATLAB simulation results, structure parameters are optimized: period is 0.300μm, the thickness of metal grating is 0.035μm, the thickness of dielectric grating is 0.400μm and grating duty ratio is 0.77. When TM light is vertically incident, the transmission rate of structure to red light in 0.65μm wavelength is 80.27% and the transmission rate of the side bands is less than 15%. This structure achieves high transmission to specific wavelength light and then achieves light filtering. This structure provides the reference for the design, fabrication and practical application of sub-wavelength gratings.
参考文献

[1] YE Y, ZHOU Y, ZHANG H, et al. Polarizing color filter based on micron metal grating[J].Acta Optica Sinica,2011,31(4): 0405003(in Chinese).

[2] ZHOU Y. Design and Fabricate the color filter and the polarizer based on the subwavelength grating[D]. Suzhou: Soochow University, 2013: 10-28(in Chinese).

[3] ZHOU W Ch, WU Y H, HAO P, et al. Transmission bandpass filters based on two-dimensional subwavelength metallic gratings[J]. Acta Optica Sinica, 2013,33(11): 1105001(in Chinese).

[4] KONG W J, ZHENG B B, YUN M J, et al. Guided-mode resonance filter with narrow waveband or three primary colors[J]. Acta Optica Sinica, 2011, 31(10): 1005006(in Chinese).

[5] WANG S S, MAGUSSON R. Theory and applications of guided-mode resonance filter[J]. Applied Optics,1993,32(14): 2606-2613.

[6] ZHENG H Y, HU F R, Design of narrowband guided-mode resonance filters in visible wavelength region[J]. Laser Technology, 2016,40(1): 118-121(in Chinese).

[7] SHOKOOH-SAREMI M, MAGNUSSON R. Particle swarm optimization and its application to the design of diffraction grating filters[J]. Optics Letters, 2007,32(8): 893-894.

[8] SHOKOOH-SAREMI M, MAGNUSSON R. Properties of two-dimensional resonant reflectors with zero-contrast gratings[J]. Optics Letters, 2014,39(24): 6958-6961.

[9] ORDAL M A, LONG L L, BELL R J, et al. Optical properties of the metals, Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared[J]. Appied Optics, 1983 , 22 (7) : 1099-1120.

[10] ZHANG G P, YE J X, LI Z G. Coupled-wave analysis of anti-reflective properties of binary phase grating[J]. Journal of Optoelectronics·Laser, 1996, 7(2): 98-102(in Chinese).

[11] SONG D J, XIE K, XIAO J. Mode field and dispersion analysis of photonic crystal fiber based on finite element method[J]. Laser Technology, 2012, 36(1): 111-114(in Chinese).

[12] TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolloing bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-80(in Chinese).

[13] DAI C, WANG Y Q, XU F. 3-D lidar echo decomposition based on particle swarm optimization[J]. Laser Technology, 2016, 40(2): 284-287(in Chinese).

[14] YANG L Y. Research on vehicle routing problem based on modified particle swarm optimization algorithm[D]. Kaifeng: Henan University, 2011: 10-28(in Chinese).

[15] ROBINSON J, RAHMAT-SAMII Y. Particle swarm optimization in electromagnetics[J].IEEE Transactions on Antennas and Propagation, 2004, 52(2): 397-407.

[16] ZHAO J R, YU Zh H, DU L. Particle swarm optimization algorithms in synthesis of fiber gratings for the non-dispersion filters in the optical communication[J]. Journal of Southern Yangtze University (Natural Science Edition), 2007, 6(1): 69-71(in Chinese).

[17] DING Q L, ZHOU Y, YE Y, et al. Reflection characteristics of metal-dielectric-metal reflective-type color filter[J]. Journal of Applied Optics, 2012, 33(4): 694-696(in Chinese).

[18] MA W T, ZHOU J, HUANG Sh P, et al. Characteristic of subwavelength dielectric grating with metal layer and its sensing applications[J]. Chinese Journal of Lasers, 2011, 38(9): 0905008(in Chinese).

[19] BAI L F, HAN J, ZHANG Y, et al. Registration algorithm of infrared and visible images based on improved gradient normalized mutual information and particle swarm optimization[J]. Infrared and Laser Engineering, 2012, 41(1): 250-252(in Chinese).

高健, 王庆康, 王丹燕. 基于粒子群优化算法的透射滤光片设计[J]. 激光技术, 2018, 42(5): 617. GAO Jian, WANG Qingkang, WANG Danyan. Design of transmittance filters based on particle swarm optimization algorithm[J]. Laser Technology, 2018, 42(5): 617.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!