强激光与粒子束, 2014, 26 (4): 045024, 网络出版: 2014-04-24  

可饱和脉冲变压器及其在脉冲调制器中的应用

New types of saturable pulse transformers and applications in high power pulse modulator and relevant devices
作者单位
国防科学技术大学 光电科学与工程学院, 长沙 410073
摘要
提出了采用多路绕组分组并联结构和同轴结构的两种新型可饱和脉冲变压器(SPT),用来取代寿命较短的气体开关,作为脉冲电容器或几百kV级脉冲调制器的充电变压器兼主开关。采用磁芯自动复位机制的新型SPT,初步解决了普通SPT难以兼具高升压倍数和绕组低饱和电感的问题,实现独立脉冲变压器和磁开关的集成紧凑化。采用初次级绕组间反向互感压制的物理机制,实现SPT次级绕组饱和电感降低到其固有饱和结构电感以下水平的重要特性,为实现低饱和电感磁开关探索了一条新技术路线。新型SPT已在螺旋Blumlein脉冲形成线(HBPFL)型高功率脉冲调制器中获得了应用: 其作为变压器实现HBPFL充电200 kV的目标; 其作为HBPFL主开关形成了幅度为180 kV、脉宽135 ns、前沿时间60 ns的准方波电压脉冲。此外,提出并验证了新型SPT应用于百kV级集成紧凑化Marx发生器及多路高电压脉冲ns同步等领域的新技术路线。
Abstract
New types of saturable pulse transformers (SPTs) with multiple batches of windings in parallel and coaxial cylindrical conductors are presented. The new SPT can be employed as the transformer and magnetic switch simultaneously for pulse capacitor or high-voltage pulse modulator of several hundred kV range. The SPT which has important features such as auto-resetting of core, high step-up ratio and low saturation inductance, achieves a compact integration of common transformer and magnetic switch. In the SPT, the physical suppression effect caused by reversed magnetic coupling mechanism among primary and secondary windings can reduce the saturation inductance of the SPT windings to a level lower than their structure inductances, which helps to achieve a magnetic switch with low saturation inductance. The proposed SPTs were applied in a high power pulse modulator based on a helical Blumlein pulse forming line (HBPFL). When the SPT played as a pulse transformer, the HBPFL could be charged to 200 kV. When the SPT played as a main magnetic switch of the HBPFL, it helped to form a quasi-square voltage pulse with amplitude of 180 kV, pulse duration of 130 ns, rise time of 60 ns. Furthermore, important new technologies and applications of SPT in 100 kV-range compact Marx generator and ns-range synchronization of multiple high-voltage pulses are proposed and demonstrated.
参考文献

[1] Rutberg P G, Budin A V, Pinchuk M E, et al. X-ray flash radiography system for high-pressure arc diagnostic[J]. IEEE Trans on Plasma Science, 2011, 39(1): 394-398.

[2] Mesyats G A, Korovin S D, Rostov V V, et al. The RADAN series of compact pulsed power generators and their applications[J]. Proceedings of the IEEE, 2004, 92(7): 1166-1179.

[3] Bluhm H, An W, Engelko V, et al. High power particle beams and pulsed power for industrial applications[C]//14th Intertional Conference on High-Power Particle Beams. 2002: 9-16.

[4] Tseng S Y, Wu T F, Wu M W. Bipolar narrow-pulse generator with energy recovery feature for liquid-food sterilization[J]. IEEE Trans on Industrial Eelectronics, 2008, 55(1): 123-132.

[5] Suematsu H, Nishimura S, Murai K, et al. Pulsed wire discharge apparatus for mass production of copper nanopowders[J]. Review of Scientific Instruments, 2007, 78: 056105.

[6] Kovalchuk B M, Kharlov A V, Vizir V A, et al. High-voltage pulsed generator for dynamic fragmentation of rocks [J]. Review of Scientific Instruments, 2010, 81: 103506.

[7] Rossi J O, Schamiloglu E, Ueda M. Advances in high-voltage modulators for applications in pulsed power and plasma-based ion implantation[J]. IEEE Trans on Plasma Science, 2011, 39(11): 3033-3034.

[8] Huiskamp T, Brok W M J, Stevens A A E, et al. Maskless patterning by pulsed-power plasma printing[J]. IEEE Trans on Plasma Science, 2012, 40(7): 1913-1925.

[9] Akiyama H, Sagugawa T, Namihira T, et al. Industrial applications of pulsed power technology[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064.

[10] Balachandran W, Thompson S A, Law S E, et al. Electrical characteristics of an electrostatic valve used for bulk transport of agricultural seeds[J]. IEEE Trans on Industry Applications, 1999, 35(2): 339-345.

[11] Takaki K, Yamaguchi R, Yamazaki N, et al. Fruit body formation of lentinula edodes by pulse electric field stimulations[C]//Proc 18th IEEE International Pulsed Power Conference. 2009: 1094-1098.

[12] 谭笑,卢佳敏,刘欣宇,等.高电压放电产生等离子体在人工降雨中的应用[J].高电压技术, 2012, 38(12): 3375-3380.(Tan Xiao, Lu Jiamin, Liu Xinyu, et al. Application of the plasma generated by high voltage discharge to the artificial rain. High Voltage Engineering, 2012, 38(12): 3375-3380)

[13] Pokryvailo A, Yankelevich Y, Wolf M, et al. A high-power pulsed corana source for pollution control applications[J]. IEEE Trans on Plasma Science, 2004, 32(5): 2045-2054.

[14] Choi Y W, Jeong I W, Rim G H, et al. Development of a magnetic pulse compression modulator for flue gas treatment[J]. IEEE Trans on Plasma Science, 2002, 30(5): 1632-1636.

[15] Akiyama H, Sakai S, Sagugawa T, et al. Environmental applications of repetitive pulsed power[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2007, 14(4): 825-833.

[16] Lou C G, Yang S H, Ji Z, et al. Ultrashort microwave-induced thermoacoustic imaging: a breakthrough in excitation efficiency and spatial resolution[J]. Physical Review Letters, 2012, 109: 218101.

[17] Razansky D, Kellnberger S, Ntziachristos V. Near-field radiography thermoacoustic tomography with impulse excitation[J]. Medical Physics, 2010, 37(9): 4602-4607.

[18] Magori Y, Ohta S, Kageyama T, et al. In vivo experiment of applying nanosecond pulsed electric fields on solid tumor[C]//Proc 19th IEEE International Pulsed Power Conference. 2011: 1253-1257.

[19] Willner I. Biomaterials for sensors, fuel cells, and circuitry[J]. Science, 2002, 298: 2407-2408.

[20] Willner I, Katz E. Bioelectronics[M]. Weinheim: Wiley-VCH, 2005.

[21] Hoffmann K H. Coupling of biological and electronic systems[M]. Berlin: Springer-Verlag, 2002.

[22] Schoenbach K H, Katsuki S, Stark R H, et al. Bioelectrics-new applications for pulsed power technology[J]. IEEE Trans on Plasma Science, 2002, 30(1): 293-300.

[23] Sabath F, Backstrom M, Nordstrom B, et al. Overview of four European high power-microwave narrow band test facilities[J]. IEEE Trans on Electromagnetic Compatibility, 2004, 46(3): 329-334.

[24] Benford J. Space applications of high-power microwaves[J]. IEEE Trans on Plasma Science, 2008, 36(3): 569-581.

[25] Sethian J D, Myers M C, Smith I D, et al. Pulsed power for a rep-rate, electron beam pumped KrF laser[J]. IEEE Trans on Plasma Science, 2000, 28(5): 1333-1337.

[26] Korovin S D, Gubanov V P, Gunin A V, et al. Repetitive nanosecond high-voltage generator based on spiral forming line[C]//IEEE International Conference on Plasma Science. 2001: 1249-1251.

[27] Su J C, Zhang X B, Liu G Z, et al. A long-pulse generator based on Tesla transformer and pulse-forming network[J]. IEEE Trans on Plasma Science, 2009, 37(10): 1954-1958.

[28] 李洪涛,王传伟,王凌云,等.500 kV全固态Marx发生器[J].强激光与粒子束, 2012, 24(4): 917-920.(Li Hongtao, Wang Chuanwei, Wang Lingyun, et al. 500 kV all-solid-state Marx generator. High Power Laser and Particle Beams, 2012, 24(4): 921-924)

[29] Hegeler F, McGeoch M W, Sethian J D, et al. A durable gigawatt class solid state pulsed power system[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2011, 18(4): 1205-1213.

[30] Harjes C, Adcock J, Martinez L, et al. Characterization of the RHEPP lμs Magnetic Pulse Compression Module[C]//Proc 9th IEEE International Pulsed Power Conference. 1993: 787-790.

[31] Teranishi T, Nojima K, Motegi S. A 600 kV Blumlein modulator for an X-band klystron[C]//Proc 8th IEEE International Pulsed Power Conference. 1991: 315-318.

[32] Masugata K, Saitoh H, Maekawa H, et al. Development of high voltage step-up transformer as a substitute for a Marx generator[J]. Review of Scientific Instruments, 1997, 68(5): 2214-2220.

[33] Tokuchi A, Ninomiya N, Jiang W H, et al. Repetitive pulsed-power generator “ETIGO-IV”[J]. IEEE Trans on Plasma Science, 2002, 30(5): 1637-1641.

[34] Zhang D D, Zhou Y, Wang J, et al. A compact, high repetition-rate, nanosecond pulse generator based on magnetic pulse compression system[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2011, 18(4): 1151-1157.

[35] Wolf M, Yankelevich Y, Pokryvailo A, et al. Modeling of a streamer plasma reactor energized by a pulse compression modulator[J]. IEEE Trans on Plasma Science, 2010, 38(10): 2793-2798.

[36] Rukin S N, Mesyats G A, Ponomarev, et al. Megavolt repetitive SOS-based generator[C]//IEEE Conference on Pulsed Power Plasma Science. 2001: 1272-1275.

[37] Ding Z J, Hao Q S, Hu L, et al. All-solid-state repetitive semiconductor opening switch-based short pulse generator[J]. Review of Scientific Instruments, 2009, 80: 093303.

[38] Zhang Y, Liu J L. Physical suppression effects of the reversed magnetic coupling on the saturation inductance of saturable pulse transformer[J]. Applied Physics Letters, 2013, 102: 253502.

[39] Zhang Y, Liu J L. A new kind of low-inductance transformer type magnetic switch (TTMS) with coaxial cylindrical conductors[J]. Review of Scientific Instruments, 2013, 84: 023306.

[40] Zhang Y, Liu J L. A new kind of solid-state Marx generator based on transformer type magnetic switches[J]. Laser and Particle Beams, 2013, 31(2): 239-248.

[41] Ding W D, Ren H, Zhang Q G, et al. Repetitive frequency Marx generator based on magnetic switches and its application in dielectric barrier discharge[J]. IEEE Trans on Plasma Science, 2012, 40(10): 2373-2378.

[42] 何安,任济,丰树平,等.Z箍缩初级实验平台的激光触发系统[J].强激光与粒子束, 2012, 24(4): 839-842.(He An, Ren Ji, Feng Shuping, et al. Laser triggering system for Z-pinch primary test stand. High Power Laser and Particle Beams, 2012, 24(4): 839-842)

[43] 谢敏,马成刚,丁伯南,等.用磁开关产生重复频率多路同步高压脉冲[J].强激光与粒子束, 2003, 15(6): 622-624.(Xie Min, Ma Chenggang, Ding Bonan, et al. High repetition rate and synchronous multi-pulse generated by magnetic switch. High Power Laser and Particle Beams, 2003, 15(6): 621-624)

[44] Zhang Y, Liu J L. Nanosecond-range multiple-pulse synchronization controlled by magnetic switches based on a communal magnetic core[J]. IEEE Trans on Plasma Science, 2013, 41(2): 371-379.

张瑜, 刘金亮. 可饱和脉冲变压器及其在脉冲调制器中的应用[J]. 强激光与粒子束, 2014, 26(4): 045024. Zhang Yu, Liu Jinliang. New types of saturable pulse transformers and applications in high power pulse modulator and relevant devices[J]. High Power Laser and Particle Beams, 2014, 26(4): 045024.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!