Frontiers of Optoelectronics, 2018, 11 (4): 317–332, 网络出版: 2019-01-10  

Progress on photochromic diarylethenes with aggregation induced emission

Progress on photochromic diarylethenes with aggregation induced emission
作者单位
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
Among various photochromic compounds, diarylethenes (DAEs) have been widely studied and applied due to their excellent thermal bistability and fatigue resistance. Most researches are focused on the properties and applications of DAEs in solution. However, they meet the problem of fluorescence quenching at high concentration or at solid state which limits their performance in the practical applications. Fortunately, the DAE based photochromic aggregation-induced emission (AIE) materials do well in addressing this problem. This work here reviews the current research progress on the structures, properties and applications of the DAE based photochromic AIE materials and points out some existing problems so as to promote subsequent development of this field in the future.
参考文献

[1] Irie M, Mohri M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. Journal of Organic Chemistry, 1988, 53(4): 803–808

[2] Irie M. Diarylethenes for memories and switches. Chemical Reviews, 2000, 100(5): 1685–1716

[3] Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews, 2014, 114(24): 12174–12277

[4] Tian H, Chen B, Tu H Y, Müllen K. Novel bisthienylethene-based photochromic tetraazaporphyrin with photoregulating luminescence. Advanced Materials, 2002, 14(12): 918–923

[5] Li C, Liu J, Xie N, Yan H, Zhu M. Research progress on photoswitchable fluorescent dithienylethenes. Polymer Bulletin, 2015, (9): 142–162

[6] Li C, Chen Y, Xie N, Liu J, Fan C, Zhou Q, Zhu M. Research progress on hydrophilic photoswitchable fluorescent diarylethenes. Chinese Journal of Applied Chemistry, 2017, 34(12): 1379–1402

[7] Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C. Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. Journal of the American Chemical Society, 2008, 130 (47): 15750–15751

[8] Li C, Hu Z, Aldred M P, Zhao L X, Yan H, Zhang G F, Huang Z L, Li A D Q, ZhuMQ.Water-soluble polymeric photoswitching dyads impart super-resolution lysosome highlighters. Macromolecules, 2014, 47(24): 8594–8601

[9] Pars M, Hofmann C C, Willinger K, Bauer P, Thelakkat M, Kohler J. An organic optical transistor operated under ambient conditions. Angewandte Chemie, 2011, 50(48): 11405–11408

[10] Berberich M, Krause A M, Orlandi M, Scandola F, Würthner F. Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angewandte Chemie, 2008, 47(35): 6616–6619

[11] Berberich M, Natali M, Spenst P, Chiorboli C, Scandola F, Würthner F. Nondestructive photoluminescence read-out by intramolecular electron transfer in a perylene bisimide-diarylethene dyad. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(43): 13651–13664

[12] Moreno J, Schweighofer F, Wachtveitl J, Hecht S. Reversible photomodulation of electronic communication in a p-conjugated photoswitch-fluorophore molecular dyad. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(3): 1070–1075

[13] Szymański W, Beierle J M, Kistemaker H A V, Velema W A, Feringa B L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chemical Reviews, 2013, 113(8): 6114–6178

[14] Pu S Z, Sun Q, Fan C B, Wang R J, Liu G. Recent advances in diarylethene-based multi-responsive molecular switches. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(15): 3075–3093

[15] LiWB, Yao Q X, Sun L, Yang X D, Guo R Y, Zhang J. A viologenbased coordination polymer exhibiting high sensitivity towards various light sources. CrystEngComm, 2017, 19(4): 722–726

[16] Cai X, Zhu L, Bao S, Luo Q. Photochromic dithienylethenebranched triptycene hybrids. Dyes and Pigments, 2015, 121: 227–234

[17] Chen S, Yang Y, Wu Y, Tian H, Zhu W. Multi-addressable photochromic terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctional molecular logic gates on unimolecular platform. Journal of Materials Chemistry, 2012, 22(12): 5486–5494

[18] Andréasson J, Pischel U. Molecules with a sense of logic: a progress report. Chemical Society Reviews, 2015, 44(5): 1053–1069

[19] Roubinet B, Bossi M L, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, Nizamov S, Irie M, Belov V N, Hell S W. Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angewandte Chemie, 2016, 55(49): 15429–15433

[20] Roubinet B, Weber M, Shojaei H, Bates M, Bossi M L, Belov V N, Irie M, Hell S W. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution. Journal of the American Chemical Society, 2017, 139(19): 6611–6620

[21] Giordano L, Jovin T M, Irie M, Jares-Erijman E A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). Journal of the American Chemical Society, 2002, 124(25): 7481–7489

[22] Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Organic chemistry: a digital fluorescent molecular photoswitch. Nature, 2002, 420(6917): 759–760

[23] Yun C, You J, Kim J, Huh J, Kim E. Photochromic fluorescence switching from diarylethenes and its applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2009, 10(3): 111–129

[24] Li C, Yan H, Zhang G F, Gong W L, Chen T, Hu R, Aldred M P, Zhu M Q. Photocontrolled intramolecular charge/energy transfer and fluorescence switching of tetraphenylethene-dithienyletheneperylenemonoimide triad with donor-bridge-acceptor structure. Chemistry, an Asian Journal, 2014, 9(1): 104–109

[25] Li C, Yan H, Zhao L X, Zhang G F, Hu Z, Huang Z L, Zhu M Q. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nature Communications, 2014, 5(1): 5709

[26] Sharnoff M. Photophysics of aromatic molecules: by John B. Birks (Wiley-Interscience, London, 1970) 704 pages, price 210 shillings. Journal of Luminescence, 1971, 4(1): 69–71

[27] Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, (18): 1740–1741

[28] Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang B Z. Aggregationinduced emission: the whole is more brilliant than the parts. Advanced Materials, 2014, 26(31): 5429–5479

[29] Aldred M P, Li C, Zhang G F, Gong W L, Li A D Q, Dai Y, Ma D, Zhu M Q. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene. Journal of Materials Chemistry, 2012, 22(15): 7515–7528

[30] Huang Z, Zhang X, Zhang X, Fu C, Wang K, Yuan J, Tao L, Wei Y. Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6(4): 607–612

[31] Tang B Z, Zhan X, Yu G, Sze Lee P P, Liu Y, Zhu D. Efficient blue emission from siloles. Journal of Materials Chemistry, 2001, 11(12): 2974–2978

[32] Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J, Shi P, James T D, Tian H, Zhu W H. Far-red and near-IR AIE-active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: shape-specific effects. Angewandte Chemie, 2015, 54(25): 7275–7280

[33] Zhang X Q, Chi Z G, Xu B J, Li H Y, Zhou W, Li X F, Zhang Y, Liu S W, Xu J R. Comparison of responsive behaviors of two cinnamic acid derivatives containing carbazolyl triphenylethylene. Journal of Fluorescence, 2011, 21(1): 133–140

[34] Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Aggregation-induced emission: together we shine, united we soar! Chemical Reviews, 2015, 115(21): 11718–11940

[35] Lim S J, An B K, Jung S D, Chung MA, Park S Y. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angewandte Chemie, 2004, 43(46): 6346–6350

[36] Li C, GongWL, Hu Z, AldredMP, Zhang G F, Chen T, Huang Z L, Zhu M Q. Photoswitchable aggregation-induced emission of a dithienylethene-tetraphenylethene conjugate for optical memory and super-resolution imaging. RSC Advances, 2013, 3(23): 8967–8972

[37] Zhang X, Zhang X, Yang B, Hui J, Liu M, Chi Z, Liu S, Xu J, Wei Y. Novel biocompatible cross-linked fluorescent polymeric nanoparticles based on an AIE monomer. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(5): 816–820

[38] Dong H, Luo M, Wang S, Ma X. Synthesis and properties of tetraphenylethylene derivatived diarylethene with photochromism and aggregation-induced emission. Dyes and Pigments, 2017, 139: 118–128

[39] Bunker C E, Hamilton N B, Sun Y P. Quantitative application of principal component analysis and self-modeling spectral resolution to product analysis of tetraphenylethylene photochemical reactions. Analytical Chemistry, 1993, 65(23): 3460–3465

[40] Aldred M P, Li C, Zhu M Q. Optical properties and photo-oxidation of tetraphenylethene-based fluorophores. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(50): 16037–16045

[41] GongWL,Wang B, AldredMP, Li C, Zhang G F, Chen T,Wang L, Zhu M Q. Tetraphenylethene-decorated carbazoles: synthesis, aggregation-induced emission, photo-oxidation and electroluminescence. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(34): 7001–7012

[42] Jiang B P, Guo D S, Liu Y C, Wang K P, Liu Y. Photomodulated fluorescence of supramolecular assemblies of sulfonatocalixarenes and tetraphenylethene. ACS Nano, 2014, 8(2): 1609–1618

[43] Ou D, Yu T, Yang Z, Luan T, Mao Z, Zhang Y, Liu S, Xu J, Chi Z, Bryce M R. Combined aggregation induced emission (AIE), photochromism and photoresponsive wettability in simple dichloro-substituted triphenylethylene derivatives. Chemical Science (Cambridge), 2016, 7(8): 5302–5306

[44] Zhu L, Wang R, Tan L, Liang X, Zhong C, Wu F. Aggregationinduced emission and aggregation-promoted photo-oxidation in thiophene-substituted tetraphenylethylene derivative. Chemistry, an Asian Journal, 2016, 11(20): 2932–2937

[45] Belen’kii L I, Gromova G P, Kolotaev A V, Nabatov B V, Krayushkin M M. Synthesis and photochromic properties of tetrakis (3,5-dimethyl-2-thienyl)- and tetrakis(2,5-dimethyl-3-thienyl)ethylenes. Russian Chemical Bulletin, 2005, 54(5): 1208–1213

[46] Luo Q, Cao F, Xiong C, Dou Q, Qu D H. Hybrid cis/trans tetraarylethenes with switchable aggregation-induced emission (AIE) and reversible photochromism in the solution, PMMA film, solid powder, and single crystal. Journal of Organic Chemistry, 2017, 82(20): 10960–10967

[47] Ma L, Wang S, Li C, Cao D, Li T, Ma X. Photo-controlled fluorescence on/off switching of a pseudo[3]rotaxane between an AIE-active pillar[5]arene host and a photochromic bithienylethene guest. Chemical Communications, 2018, 54(19): 2405–2408

[48] Chen S, Li W, Li X, Zhu W H. Aggregation-controlled photochromism based on a dithienylethene derivative with aggregation-induced emission. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(10): 2717–2722

[49] Chen L, Zhang J, Wang Q, Zou L. Photo-controllable and aggregation-induced emission based on photochromic bithienylethene. Dyes and Pigments, 2015, 123: 112–115

[50] Su J, Fukaminato T, Placial J P, Onodera T, Suzuki R, Oikawa H, Brosseau A, Brisset F, Pansu R, Nakatani K, Métivier R. Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles. Angewandte Chemie, 2016, 55(11): 3662–3666

[51] Liu G, Zhang Y M, Zhang L, Wang C, Liu Y. Controlled photoerasable fluorescent behaviors with dithienylethene-based molecular turnstile. ACS Applied Materials & Interfaces, 2018, 10(15): 12135–12140

[52] Liu G, Zhang Y M, Xu X, Zhang L, Liu Y. Optically switchable luminescent hydrogel by synergistically intercalating photochromic molecular rotor into inorganic clay. Advanced Optical Materials., 2017, 5(11): 1700149

[53] Chung J W, Yoon S J, Lim S J, An B K, Park S Y. Dual-mode switching in highly fluorescent organogels: binary logic gates with optical/thermal inputs. Angewandte Chemie, 2009, 48(38): 7030–7034

[54] Sinawang G, Wang J, Wu B, Wang X, He Y. Photoswitchable aggregation-induced emission polymer containing dithienylethene and tetraphenylethene moieties. RSC Advances, 2016, 6(15):12647–12651

[55] Lim S J, An B K, Park S Y. Bistable photoswitching in the film of fluorescent photochromic polymer: enhanced fluorescence emission and its high contrast switching. Macromolecules, 2005, 38(15):6236–6239

[56] Singh R,Wu H Y, Kumar Dwivedi A, Singh A, Lin CM, Raghunath P, Lin M C, Wu T K, Wei K H, Lin H C. Monomeric and aggregation emissions of tetraphenylethene in a photo-switchable polymer controlled by cyclization of diarylethene and solvent conditions. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(38): 9952–9962

[57] Tsivgoulis G M, Lehn J M. Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory. Angewandte Chemie, 1995, 34(10): 1119–1122

[58] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. Journal of the American Chemical Society, 2011, 133(13): 4984–4990

[59] Berberich M, Wurthner F. Terrylene bisimide-diarylethene photochromic switch. Chemical Science (Cambridge), 2012, 3(9): 2771–2777

[60] Berberich M, Krause A M, Orlandi M, Scandola F, Würthner F. Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angewandte Chemie, 2008, 47(35): 6616–6619

[61] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. Journal of the American Chemical Society, 2011, 133(13): 4984–4990

[62] Fernández-Suárez M, Ting A Y. Fluorescent probes for superresolution imaging in living cells. Nature Reviews, Molecular Cell Biology, 2008, 9(12): 929–943

[63] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313(5793): 1642–1645

[64] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006, 3(10): 793–796

[65] Yan J, Zhao L X, Li C, Hu Z, Zhang G F, Chen Z Q, Chen T, Huang Z L, Zhu J, Zhu M Q. Optical nanoimaging for block copolymer self-assembly. Journal of the American Chemical Society, 2015, 137(7): 2436–2439

[66] Huang B, Wang W, Bates M, Zhuang X. Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810–813

[67] Heilemann M, Dedecker P, Hofkens J, Sauer M. Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser & Photonics Reviews, 2009, 3(1–2): 180–202

[68] Zhu M Q, Zhang G F, Li C, Li Y J, Aldred M P, Li A D Q. Photoswitchable nanofluorophores for innovative biomaging. Journal of Innovative Optical Health Sciences, 2011, 04(04): 395–408

, , , , . Progress on photochromic diarylethenes with aggregation induced emission[J]. Frontiers of Optoelectronics, 2018, 11(4): 317–332. Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Frontiers of Optoelectronics, 2018, 11(4): 317–332.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!