强激光与粒子束, 2013, 25 (11): 2939, 网络出版: 2013-11-14   

同轴腔高阶模式回旋管振荡器中多模起振过程的非线性模拟

Nonlinear simulation of multimode startup in the high-order-mode coaxial-cavity gyrotron oscillator
作者单位
西南交通大学 信息科学与技术学院, 成都 610031
摘要
给出了工作在高阶模式下的同轴腔回旋管振荡器,在考虑竞争模式情况下的多模起振过程的数理模型和具体的数值计算方法。以此为基础编制的程序对一只工作于高阶模式TE42,22,频率为0.22 THz的同轴腔回旋管振荡器进行了多模非线性模拟研究。结果表明:在合适的腔体结构参数并考虑腔壁上的欧姆损耗情况下,竞争模式得到有效抑制,可以稳定地工作在单一模式,输出功率达0.87 MW,效率为22.8%,腔壁上的欧姆损耗低于其所能承受的最大值。
Abstract
A model of multimode startup in the coaxial-cavity gyrotron operating at higher-order mode with mode competition taken into account is presented in this paper, the detailed numerical calculation method is also given. By the use of the code based on this model, the nonlinear multimode simulations on a coaxial-cavity gyrotron with the high-order mode TE42,22 at a frequency of 0.22 THz are performed. The results show that with proper cavity parameters and considering the ohmic losses on the wall, the competing modes can be effectively suppressed, this resonator can operate stably at a single mode with the output power of 0.87 MW and corresponding efficiency of 22.8%, and the maximum density of ohmic losses on the wall is below the constraint.
参考文献

[1] Glyavin M Y, Luchinin A G, Golubiatnikov G Y. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic Field[J]. Phys Rev Lett, 2008, 100: 015101.

[2] Idehara T, Tsuchiya H, Watanabe O, et al. The first experiment of a THz gyrotron with a pulse magent[J]. Int J Infrared Millimeter Waves, 2006, 27(3): 319-331.

[3] Idehara T, Ogawa I, Augusa La, et al. Development of 394.6 GHz CW gyrotron(gyrotron FU CW II)for DNP/Proton_NMR at 600 MHz[J]. J Infrared Milli Terahz Waves, 2007, 28(6): 433-442.

[4] Ogawa I, Kosuga K, et al. Development of THz gyrotron FU CW III using a 20 T superconducting magnet[C]//36th International Conference on Infrared Millimeter and Terahertz Waves. 2011.

[5] Rzesnicki T, Piosczyk B, Kern S, et al. 2.2 MW record power of the 170 GHz European preprototype coaxial-cavity gyrotron for ITER[J]. IEEE Trans on Plasma Sci, 2010, 38(6): 1141-1148.

[6] Piosczyk B, Braz B, Dammertz G, et al. A 1.5 MW, 140 GHz, TE28,16-coaxial cavity gyrotron[J]. IEEE Trans on Plasma Sci, 1997, 25(3): 460-469.

[7] Iatrou C T, Braz O, Dammertz G, et al. Design and experimental operation of a 165 GHz, 1.5 MW, coaxial cavity gyrotron with axial RF output[J]. IEEE Trans on Plasma Sci, 1997, 25(3): 470-479.

[8] Iatrou C T, Kern S, Pavelyev A B. Coaxial cavities with corrugated inner conductor for gyrotrons[J]. IEEE Trans on Microwave Theory and Techniques, 1996, 44(1): 56-64.

[9] Iatrou C T. Mode selective properties of coaxial gyrotrons resonators[J]. IEEE Trans on Plasma Sci, 1996, 24(3): 596-605.

[10] 刘睿,李宏福. 回旋管同轴谐振腔模式的选择[J]. 强激光与粒子束, 2011, 23(5): 1315-1318.(Liu Rui, Li Hongfu, Mode selective properties of gyrotron coaxial cavities. High Power Laser and Particle Beams , 2011, 23(5): 1315-1318)

[11] 袁学松,鄢扬, 傅文杰,等. 220 GHz回旋单腔管的设计[J]. 强激光与粒子束, 2007, 19(10): 1677-1679.(Yuan Xuesong, Yan Yang, Fu Wenjie, et al. Design of a 220 GHz gyrotron oscillator, High Power Laser and Particle Beams, 2007, 19(10): 1677-1679)

[12] Kartikeyan M V, Borie E, Thumm M. Gyrotrons high power microwave and millimeter wave technology[M]. Berlin: Springer-Verlag, 2004.

[13] 顾茂章,张克潜. 微波技术[M]. 北京:清华大学出版社,1990.(Gu Maozhang, Zhang Keqian. Microwave technology. Beijing: Tsinghua University Press,1990)

张辉波. 同轴腔高阶模式回旋管振荡器中多模起振过程的非线性模拟[J]. 强激光与粒子束, 2013, 25(11): 2939. Zhang Huibo. Nonlinear simulation of multimode startup in the high-order-mode coaxial-cavity gyrotron oscillator[J]. High Power Laser and Particle Beams, 2013, 25(11): 2939.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!