Photonics Research, 2019, 7 (9): 09001042, Published Online: Aug. 13, 2019   

Simultaneous dual-contrast three-dimensional imaging in live cells via optical diffraction tomography and fluorescence Download: 645次

Author Affiliations
1 Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
3 Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
4 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
5 Australian Research Council (ARC), Centre of Excellence in Advanced Molecular Imaging, Australia
6 Istituto Italiano di Tecnologia, Genova 16163, Italy
7 School of Physics, University of Melbourne, Victoria 3010, Australia
8 School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
9 Microvision and Microdiagnostic Group (SCI STI CHD), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
10 Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
11 Joint International Research Unit in Neurodevelopment and Child Psychiatry, CHUV, Département de Psychiatrie, Lausanne, Switzerland, Université Laval, Québec, Canada
12 Institut universitaire en santé mentale de Québec, Québec, Canada
13 Centre d’optique, photonique et laser, Department of Psychiatry and Neuroscience, Université Laval, 2375 rue de la Terrasse, Québec, QC G1V 0A6, Canada
14 e-mail: xcyuan@szu.edu.cn
15 e-mail: christian.depeursinge@epfl.ch
16 e-mail: Pierre.Marquet@neuro.ulaval.ca
17 e-mail: s.kou@latrobe.edu.au
Copy Citation Text

Chen Liu, Michael Malek, Ivan Poon, Lanzhou Jiang, Arif M. Siddiquee, Colin J. R. Sheppard, Ann Roberts, Harry Quiney, Douguo Zhang, Xiaocong Yuan, Jiao Lin, Christian Depeursinge, Pierre Marquet, Shan Shan Kou. Simultaneous dual-contrast three-dimensional imaging in live cells via optical diffraction tomography and fluorescence[J]. Photonics Research, 2019, 7(9): 09001042.

References

[1] G. J. Brakenhoff, H. T. van der Voort, E. A. van Spronsen, W. A. M. Linnemans, N. Nanninga. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature, 1985, 317: 748-749.

[2] R. Schmidt, C. A. Wurm, A. Punge, A. Egner, S. Jakobs, S. W. Hell. Mitochondrial cristae revealed with focused light. Nano Lett., 2009, 9: 2508-2510.

[3] Z. Zeng, P. Xi. Advances in three-dimensional super-resolution nanoscopy. Microsc. Res. Tech., 2016, 79: 893-898.

[4] S. J. Sahl, S. W. Hell, S. Jakobs. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol., 2017, 18: 685-701.

[5] C. Van Rijnsoever, V. Oorschot, J. Klumperman. Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat. Methods, 2008, 5: 973-980.

[6] N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, E. Beaurepaire. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science, 2010, 329: 967-971.

[7] A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum., 1995, 66: 5486-5492.

[8] A. Momose, T. Takeda, Y. Itai, K. Hirano. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat. Med., 1996, 2: 473-475.

[9] K. Nagayama, R. Danev. Phase contrast electron microscopy: development of thin-film phase plates and biological applications. Philos. Trans. R. Soc. B, 2008, 363: 2153-2162.

[10] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 2013, 7: 739-745.

[11] T. S. Ralston, D. L. Marks, P. S. Carney, S. A. Boppart. Interferometric synthetic aperture microscopy. Nat. Phys., 2007, 3: 129-134.

[12] C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, R. Drezek. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat., 2004, 3: 33-40.

[13] K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, Z. Liu. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10: 3318-3323.

[14] L. Chen, Y. Zhou, M. Wu, M. Hong. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv., 2018, 1: 170001.

[15] X. Luo, D. Tsai, M. Gu, M. Hong. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev., 2019, 48: 2458-2494.

[16] E. Wolf. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun., 1969, 1: 153-156.

[17] StarkH., Image Recovery: Theory and Application (Academic, 1987).

[18] O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac. Tomographic diffractive microscopy: basics, techniques and perspectives. J. Mod. Opt., 2010, 57: 686-699.

[19] W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, M. S. Feld. Tomographic phase microscopy. Nat. Methods, 2007, 4: 717-719.

[20] T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, G. Popescu. White-light diffraction tomography of unlabelled live cells. Nat. Photonics, 2014, 8: 256-263.

[21] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, C. Depeursinge. Marker-free phase nanoscopy. Nat. Photonics, 2013, 7: 113-117.

[22] J. M. Soto, J. A. Rodrigo, T. Alieva. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express, 2017, 25: 15699-15712.

[23] M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, N. T. Shaked. Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation. Adv. Sci., 2017, 4: 1600205.

[24] A. J. Devaney. A filtered backpropagation algorithm for diffraction tomography. Ultrason. Imag., 1982, 4: 336-350.

[25] W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld. Extended depth of focus in tomographic phase microscopy using a propagation algorithm. Opt. Lett., 2008, 33: 171-173.

[26] S. X. Pan, A. C. Kak. A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered back propagation. IEEE Trans. Acoust. Speech Signal Process., 1983, 31: 1262-1275.

[27] KakA. C.SlaneyM., Principles of Computerized Tomographic Imaging (IEEE, 1988).

[28] BornM.WolfE., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 2005).

[29] C. J. R. Sheppard, J. Lin, S. S. Kou. Rayleigh–Sommerfeld diffraction formula in k space. J. Opt. Soc. Am. A., 2013, 30: 1180-1183.

[30] S. S. Kou, C. J. R. Sheppard, J. Lin. Calculation of the volumetric diffracted field with a three-dimensional convolution: the three-dimensional angular spectrum method. Opt. Lett., 2013, 38: 5296-5298.

[31] S. S. Kou, C. J. R. Sheppard. Image formation in holographic tomography: high-aperture image conditions. Appl. Opt., 2009, 48: H168-H175.

[32] KakA. C.SlaneyM., Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).

[33] S. Chowdhury, W. J. Eldridge, A. Wax, J. A. Izatt. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomed. Opt. Express, 2017, 8: 2496-2518.

[34] M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, P. Müller. Three‐dimensional correlative single‐cell imaging utilizing fluorescence and refractive index tomography. J. Biophoton., 2018, 11: e201700145.

[35] K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, Y. Park. Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging. Biomed. Opt. Express, 2017, 8: 5688-5697.

[36] J. Jung, S. J. Hong, H. B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D. J. Kim, C. G. Lee, Y. Park. Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci. Rep., 2018, 8: 6524.

[37] S. Shin, D. Kim, K. Kim, Y. Park. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci. Rep., 2018, 8: 9183.

[38] S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, W. C. Earnshaw. Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp. Cell. Res., 2007, 313: 3635-3644.

[39] KalosM. H.WhitlockP. A., Monte Carlo Methods, 2nd ed. (Wiley, 2008).

[40] B. Chyba, M. Mantler, M. Reiter. Monte Carlo simulation of projections in computed tomography. Powder Diffr., 2008, 23: 150-153.

[41] D. Kumar, W. Cong, G. Wang. Monte Carlo method for bioluminescence tomography. Indian J. Exp. Biol., 2007, 45: 58-63.

[42] KailG.NovakC.HoferB.HlawatschF., “A blind Monte Carlo detection-estimation method for optical coherence tomography,” in International Conference on Acoustics, Speech, and Signal Processing (2009), pp. 493496.

[43] G. Quan, K. Wang, X. Yang, Y. Deng, Q. Luo, H. Gong. Micro-computed tomography-guided, non-equal voxel Monte Carlo method for reconstruction of fluorescence molecular tomography. J. Biomed. Opt., 2012, 17: 086006.

[44] E. Harlow, D. Lane. Fixing attached cells in paraformaldehyde. CSH Protoc., 2006, 2006: 4294-4296.

[45] D. R. Croft, M. L. Coleman, S. Li, D. Robertson, T. Sullivan, C. L. Stewart, M. F. Olson. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J. Cell Biol., 2005, 168: 245-255.

[46] J. F. R. Kerr, A. H. Wyllie, A. R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer, 1972, 26: 239-257.

[47] I. K. Poon, Y. H. Chiu, A. J. Armstrong, J. M. Kinchen, I. J. Juncadella, D. A. Bayliss, K. S. Ravichandran. Unexpected link between an antibiotic, pannexin channels, and apoptosis. Nature, 2014, 507: 329-334.

Chen Liu, Michael Malek, Ivan Poon, Lanzhou Jiang, Arif M. Siddiquee, Colin J. R. Sheppard, Ann Roberts, Harry Quiney, Douguo Zhang, Xiaocong Yuan, Jiao Lin, Christian Depeursinge, Pierre Marquet, Shan Shan Kou. Simultaneous dual-contrast three-dimensional imaging in live cells via optical diffraction tomography and fluorescence[J]. Photonics Research, 2019, 7(9): 09001042.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!