Photonics Research, 2015, 3 (5): 050000B1, Published Online: Jan. 6, 2016   

Quantum dot lasers for silicon photonics [Invited] Download: 709次

Author Affiliations
1 Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
2 Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara,California 93106, USA
Abstract
We review recent advances in the field of quantum dot lasers on silicon. A summary of device performance, reliability, and comparison with similar quantum well lasers grown on silicon will be presented. We consider the possibility of scalable, low size, weight, and power nanolasers grown on silicon enabled by quantum dot active regions for future short-reach silicon photonics interconnects.
References

[1] D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).

[2] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).

[3] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012).

[4] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).

[5] O. Ueda and S. J. Pearton, Materials and Reliability Handbook for Semiconductor Optical and Electron Devices (Springer, 2013).

[6] J.-M. Gerard and C. Weisbuch, “Semiconductor structure for optoelectronic components with inclusions,” U.S. patent 5,075,742 (December 24, 1991).

[7] J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).

[8] K. Linder, J. Phillips, O. Qasaimeh, X. Liu, S. Krishna, P. Bhattacharya, and J. Jiang, “Self-organized In0.4Ga0.6As quantum- dot lasers grown on Si substrates,” Appl. Phys. Lett. 74, 1355–1357 (1999).

[9] Z. Mi, P. Bhattacharya, J. Yang, and K. Pipe, “Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).

[10] J. Yang, P. Bhattacharya, and Z. Mi, “High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiplelayer quantum-dot dislocation filters,” IEEE Trans. Electron Devices 54, 2849–2855 (2007).

[11] Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “Highperformance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97, 1239–1249 (2009).

[12] T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19, 11381–11386 (2011).

[13] A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuouswave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20, 22181–22187 (2012).

[14] S. Chen, M. Tang, J. Wu, Q. Jiang, V. Dorogan, M. Benamara, Y. Mazur, G. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100°C,” Electron. Lett. 50, 1467–1468 (2014).

[15] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

[16] D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

[17] D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14(9), 388–397 (2011).

[18] T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuouswave operation of 1300-nm-range quantum-dot lasers,” in The European Conference on Lasers and Electro-Optics (Optical Society of America, 2011).

[19] Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125°C,” J. Lightwave Technol. 33, 1223–1229 (2014).

[20] D. Livshits, A. Gubenko, S. Mikhrin, V. Mikhrin, C.-H. Chen, M. Fiorentino, and R. Beausoleil, “High efficiency diode comb-laser for DWDM optical interconnects,” in IEEE Optical Interconnects Conference (2014), pp. 83–84.

[21] C.-H. J. Chen, T.-C. Huang, D. Livshit, A. Gubenko, S. Mikhrin, V. Mikhrin, M. Fiorentino, and R. Beausoleil, “A comb laserdriven DWDM silicon photonic transmitter with microring modulator for optical interconnect,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper STu4F-1.

[22] K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).

[23] K. Tanabe, T. Rae, K. Watanabe, and Y. Arakawa, “Hightemperature 1.3 μm InAs/GaAs quantum dot lasers on Si substrates fabricated by wafer bonding,” Appl. Phys. Express 6, 082703 (2013).

[24] K. Tanabe and Y. Arakawa, “1.3 μm InAs/GaAs quantum dot lasers on SOI waveguide structures,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper STh1G-6.

[25] Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metalstripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).

[26] H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

[27] R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).

[28] L. Y. Karachinsky, T. Kettler, I. Novikov, Y. M. Shernyakov, N. Y. Gordeev, M. Maximov, N. Kryzhanovskaya, A. Zhukov, E. Semenova, A. Vasil’Ev, V. Ustinov, G. Fiol, M. Kuntz, A. Lochmann, O. Schulz, L. Reissmann, K. Posilovic, R. Kovsh, S. Mikhrin, V. Shchukin, N. Ledentsov, and D. Bimberg, “Metamorphic 1.5 μm-range quantum dot lasers on a GaAs substrate,” Semicond. Sci. Technol. 21, 691 (2006).

[29] C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett. 98, 201102 (2011).

[30] A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).

[31] Z. I. Kazi, P. Thilakan, T. Egawa, M. Umeno, and T. Jimbo, “Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition,” Jpn J. Appl. Phys. 40, 4903 (2001).

[32] J. Li, J. Hydrick, J. Park, J. Li, J. Bai, Z. Cheng, M. Carroll, J. Fiorenza, A. Lochtefeld, W. Chan, and Z. Shellenbarger, “Monolithic integration of GaAs/InGaAs lasers on virtual Ge substrates via aspect-ratio trapping,” J. Electrochem. Soc. 156, H574–H578 (2009).

[33] X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/ GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).

[34] L. Kimerling, “Recombination enhanced defect reactions,” Solid- State Electron. 21, 1391–1401 (1978).

[35] A. Liu, R. Herrick, O. Ueda, P. Petroff, A. Gossard, and J. Bowers, “Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 21, 1900708 (2015).

[36] P. Petroff and R. Hartman, “Defect structure introduced during operation of heterojunction GaAs lasers,” Appl. Phys. Lett. 23, 469–471 (1973).

[37] R. Beanland, A. Sanchez, D. Childs, K. Groom, H. Liu, D. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 μm quantum dot lasers,” J. Appl. Phys. 103, 014913 (2008).

[38] R. Beanland, J. David, and A. Sanchez, “Quantum dots in strained layers preventing relaxation through the precipitate hardening effect,” J. Appl. Phys. 104, 123502 (2008).

[39] E. Fitzgerald and N. Chand, “Epitaxial necking in GaAs grown on pre-pattemed Si substrates,” J. Electron. Mater. 20, 839–853 (1991).

[40] X. Zhang, P. Li, G. Zhao, D. W. Parent, F. Jain, and J. Ayers, “Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls,” J. Electron. Mater. 27, 1248–1253 (1998).

[41] M. J. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).

[42] A. Able, W. Wegscheider, K. Engl, and J. Zweck, “Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers,” J. Cryst. Growth 276, 415–418 (2005).

[43] S. Zamek, L. Feng, M. Khajavikhan, D. T. Tan, M. Ayache, and Y. Fainman, “Micro-resonator with metallic mirrors coupled to a bus waveguide,” Opt. Express 19, 2417–2425 (2011).

[44] D. Liang, S. Srinivasan, D. Fattal, M. Fiorentino, Z. Huang, D. Spencer, J. Bowers, and R. Beausoleil, “Teardrop reflectorassisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).

[45] J. K. Kim, R. L. Naone, and L. A. Coldren, “Lateral carrier confinement in miniature lasers using quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6, 504–510 (2000).

[46] S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).

[47] E. Yablonovitch, C. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Appl. Phys. Lett. 51, 439–441 (1987).

[48] M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87, 3497–3504 (2000).

[49] V. Chobpattana, E. Mikheev, J. Y. Zhang, T. E. Mates, and S. Stemmer, “Extremely scaled high-k/In0.53Ga0.47As gate stacks with low leakage and low interface trap densities,” J. Appl. Phys. 116, 124104 (2014).

Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, John E. Bowers. Quantum dot lasers for silicon photonics [Invited][J]. Photonics Research, 2015, 3(5): 050000B1.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!