光学学报, 2014, 34 (12): 1232001, 网络出版: 2014-11-04   

飞秒激光对镍基合金的损伤机制和阈值行为

Femtoseoncd Laser-Induced Ablation Regimes and Thresholds in a Nickel-Based Superalloy
作者单位
1 北京航空制造工程研究所高能束流加工技术重点实验室, 北京 100024
2 北京科技大学国家材料服役安全科学中心, 北京 100083
3 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
摘要
针对飞秒激光加工镍基单晶高温合金材料,在能量密度为0~12.8 J/cm2和脉冲个数为0~8000范围内,对表面损伤和加工侧壁区域进行了显微形貌分析,研究了不同能量密度和脉冲个数情况下的损伤机制,不同损伤机制的损伤阈值和热效应。镍基单晶高温合金经飞秒激光加工后,呈现两种损伤机制,分别为非热熔性损伤和热熔性损伤,单脉冲损伤阈值分别为0.23 J/cm2和1.21 J/cm2,孕育系数分别为0.90和0.92。在此基础上,建立了损伤机制和损伤阈值与能量密度和脉冲个数的定量关系,实验结果对加工无微裂纹和无再铸层的高质量镍基航空器件的工艺选择有实际指导意义。
Abstract
Femtosecond laser-induced ablation regimes and ablation thresholds of single-crystal nickel-based superalloy are investigated by means of microstructure on machined surface and trench as a function of laser fluence of 0~12.8 J/cm2 and the number of pulses of 0~8000. Two distinct ablation regimes (no-melting and melting ablation regime) are observed, dependent on the incident laser fluence. The ablation threshold fluences for these two ablation regimes are determined to be 0.23 J/cm2 and 1.21 J/cm2 in the superalloy. And the incubation factors for these two ablation regimes are determined to be 0.90 and 0.92. Furthermore, the relationship between both ablation regimes and ablation thresholds and their parametric dependence is established. The experimental results have practical guiding for processing nickel-based aviation of no recast layer and micro-cracks.
参考文献

[1] S K Sundaram, E Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses [J]. Nature Materials, 2002, 1(4): 217-224.

[2] D K Das, T M Pollock. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy [J]. Journal of Materials Processing Technology, 2009, 209(15): 5661-5668.

[3] Q Feng, Y N Picard, H Liu, et al.. Femtosecond laser micromachining of a single-crystal superalloy [J]. Scripta Materialia, 2005, 53(5): 511-516.

[4] Q Feng, Y N Picard, J P McDonald, et al.. Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings [J]. Materials Science and Engineering A, 2006, 430(1-2): 203-207.

[5] R R Gattass, E Mazur. Femtosecond laser micromachining in transparent materials [J]. Nat Photon, 2008, 2(4): 219-225.

[6] N H Rizvi. Femtosecond laser micromachining: Current status and applications [J]. Piken Review, 2003, 50: 107-112.

[7] W Zhang, G Cheng, Q Feng, et al.. Femtosecond laser machining characteristics in a single-crystal superalloy [J]. Rare Metals, 2011, 30(1): 639-642.

[8] S Ma, J P McDonald, B Tryon, et al.. Femtosecond laser ablation regimes in a single-crystal superalloy [J]. Metallurgical and Materials Transactions A, 2007, 38A(13): 2349-2357.

[9] N Semaltianos, W Perrie, P French, et al.. Femtosecond laser ablation characteristics of nickel-based superalloy C263 [J]. Appl Phys A, 2009, 94(4): 999-1009.

[10] W Zhang, G Cheng, Q Feng, et al.. Abrupt transition from wavelength structure to subwavelength structure in a single-crystal superalloy induced by femtosecond laser [J]. Applied Surface Science, 2011, 257(9): 4321-4324.

[11] W Zhang, G Cheng, Q Feng. Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation [J]. Applied Surface Science, 2012, 263: 436-439.

[12] J Bonse, P Rudolph, J Kruger, et al.. Femtosecond pulse laser processing of TiN on silicon [J]. Applied Surface Science, 2000, 154-155: 659-663.

[13] 罗新民, 韩光田, 杨坤, 等. 304奥氏体不锈钢激光冲击表面改性组织热致回归的微观机制[J]. 中国激光, 2013, 40(2): 0203006.

    Luo Xinmin, Han Guangtian, Yang Kun, et al.. Thermo-induced regression of microstructure of laser-shocked surface modification of 304 austenitic stainless steel [J]. Chinese J Lasers, 2013, 40(2): 0203006.

[14] 李冬娟, 林灵, 吕百达, 等. 低重复频率飞秒激光在石英玻璃内写入的II类波导的偏振依赖导光性研究[J]. 光学学报, 2013, 33(5): 0532001.

    Li Dongjuan, Lin Ling, Lü Baida, et al.. Polarization-dependent optical guiding in low repetition frequency femtosecond laser photowritten type II fused silica waveguides [J]. Acta Optica Sinica, 2013, 33(5): 0532001.

[15] 戴晔, 邱建荣. 单光束飞秒激光诱导石英玻璃内部纳米光栅的研究进展[J]. 激光与光电子学进展, 2013, 50(12): 120002.

    Dai Ye, Qiu Jianrong. Research progress of single beam femtosecond laser direct writing self-organized nanogratings in fused silica [J]. Laser & Optoelectronics Progress, 2013, 50(12): 120002.

[16] 陈超, 杨先辉, 王闯, 等. 飞秒激光刻写高阶倾斜光纤Bragg光栅[J]. 光学学报, 2014, 34(5): 0506001.

    Chen Chao, Yang Xianhui, Wang Chuang, et al.. High-order tilted fiber Bragg gratings carved with femtosecond laser [J]. Acta Optica Sinica, 2014, 34(5): 0506001.

[17] A Borowiec, H K Haugen. Femtosecond laser micromachining of grooves in indium phosphide [J]. Appl Phys A, 2004, 79(3): 521-529.

[18] B N Chichkov, C Momma, S Nolte, et al.. Femtosecond, picosecond and nanosecond laser ablation of solids [J]. Appl Phys, 1996, 63(2): 109-115.

[19] S Nolte, C Momma, H Jacobs, et al.. Ablation of metals by ultrashort laser pulses [J]. Physics A, 2004, 79(3): 521-529.

[20] K Dou, E T Knobbe, R L Parkhill, et al.. Femtosecond study of surface structure and composition and time-resolved spectroscopy in metals [J]. Appl Phys A, 2003, 79(3): 303-307.

[21] J Bonse, K W Brzezinka, A J Meixner. Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy [J]. Applied Surface Science, 2004, 221(1-4): 215-230.

[22] N M Bulgakova, A V Bulgakov. Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion [J]. Appl Phys A, 2001, 73(2): 199-208.

张伟, 冯强, 程光华, 张晓兵. 飞秒激光对镍基合金的损伤机制和阈值行为[J]. 光学学报, 2014, 34(12): 1232001. Zhang Wei, Feng Qiang, Cheng Guanghua, Zhang Xiaobing. Femtoseoncd Laser-Induced Ablation Regimes and Thresholds in a Nickel-Based Superalloy[J]. Acta Optica Sinica, 2014, 34(12): 1232001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!