红外与激光工程, 2018, 47 (4): 0404005, 网络出版: 2018-09-19   

中红外差分式CO检测仪的设计与实验

Design and experiment of mid-infrared differential CO detector
作者单位
1 中国石油大学(华东) 信息与控制工程学院, 山东 青岛 266580
2 吉林大学 集成光电子学国家重点实验室吉林大学实验区 电子科学与工程学院, 吉林 长春 130012
摘要
CO分子在4.6 μm 具有最强吸收峰, 以此作为气体吸收的中心波长, 结合光源EMS200光源的发光特性, 设计开放式的球面反射镜气室, 采用单探测器双通的结构, 研制了一种中红外差分式CO检测仪。利用模拟混合气站配备标准的CO气体浓度, 对该仪器的相关性能开展研究。研究表明: 仪器分辨率为20 ppm(1 ppm=10-6), 最低检测下限为18 ppm。CO浓度在30~1 500 ppm范围内, 其测量误差不超过8.5%。与激光光谱技术的CO检测仪相比, 该系统采用脉冲红外热光源, 其性价比高; 采用开放球面反射镜气室, 光路简单易于实现。所以该CO检测仪在煤矿开采、环境监测、石油化工等领域具有较高的实际应用价值。
Abstract
CO molecules have the strongest absorption peak at 4.6 μm, which was selected as the central wavelength of the gas absorption. Combined with the luminescence characteristics of light source EMS200, spherical mirror chamber open was designed. A mid-infrared differential CO detection system was developed using the double pass structure of single detector. The performance of the instrument was studied by using the standard gas concentration of carbon monoxide in the mixed gas station. The research results reveal that, the resolution of the instrument is 20 ppm, and the limit of detection (LOD) is 18 ppm. The relative error was not more than 8.5% within the low concentration range of 30-1 500 ppm. Compared with the CO detection systems utilizing laser spectroscopy technology, pulsed infrared thermal source used in this system, its performance-cost ratio was high; with open spherical mirror chamber, the light path was simple and easy to implement. So the proposed detector shows potential applications in CO detection under the circumstances of coal-mine, environmental protection and petrochemical industry.
参考文献

[1] 潘卫东, 张佳薇, 戴景民, 等. 利用可调谐半导体激光吸收光谱法在1.626 μm处实现乙烯和甲烷的同步检测[J]. 红外与毫米波学报, 2013, 32(6): 487-490.

    Pan Weidong, Zhang Jiawei, Dai Jingmin, et al. Tunable diode laser absorption spectroscopy for simultaneous measurement of ethylene and methane near 1.626 μm [J]. Journal of Infrared and Millimeter Waves, 2013, 32(6):487-490. (in Chinese)

[2] 姚路, 刘文清, 刘建国, 等. 基于 TDLAS 的长光程环境大气痕量 CO 监测方法研究[J].中国激光, 2015, 42 (2): 305-312.

    Yao Lu, Liu Wenqing, Liu Jianguo, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 2015, 42(2): 305-312. (in Chinese)

[3] Xia H, Wu B, Zhang Z R, et al. Stability study on high sensitive CO monitoring in near-infrared [J]. Acta Physica Sinca, 2013, 62: 214208.

[4] Zheng Longjiang, Huang Xinyan, Bi Genfeng. Study of optical fiber carbon monoxide gas sensor with DFB LD[C]//Proceedings of SPIE, 2008, 6625: 66251Y-7.

[5] Sun K, Chao X, Sur R, et al. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing [J]. Applied Physics B, 2012, 110(4):497-508.

[6] Goldenstein C S, Strand C L, Schultz I A, et al. Fitting of calibration free scanned wavelength modulation spectroscopy spectra for determination of gas properties and absorption lineshapes[J]. Applied Optics, 2014, 53(3): 356-367.

[7] Chao Xing, Jeffries J B, Hanson R K. In situ absorption sensor for NO in combustion gases with a 5.2 滋m quantum-cascade laser[J]. Proceedings of the Combustion Institute, 2011, 33(1): 725-733.

[8] Scherer J J, Paul J B, Jost H J, et al. Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring[J]. Applied Physics B, 2013, 110: 271-277.

[9] Nikkari J J, Diiorio L, Thomson M J. In situ combustion measurements of CO, H2O, and temperature with a 1.58mm diode laser and two-tone frequency modulation[J]. Applied Optics, 2002, 41(3): 446-452.

[10] 张琳, 张黎明, 李燕, 等. 偏最小二乘法在傅里叶变换红外光谱中的应用及进展[J]. 光谱学与光谱分析, 2005, 25(10): 1610-1613.

    Zhang Lin, Zhang Liming, Li Yan, et al. Application and improvement of partial-least-squares in fourier transform infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2005, 25(10): 1610-1613. (in Chinese)

[11] Ye W L, Zheng C T, Yu X, et al. Design and performances of a mid-infrared CH4 detection device with novel three-channel-based LS-FTF self-adaptive denoising structure[J]. Sensors and Actuators B, 2011, 155(1): 37-45.

[12] Vanderover J, Wang W, Oehlschlaeger M A. A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy[J]. Applied Physics B, 2011, 103(4): 959-966.

[13] Melas F D, Pustogov V V, Croitoru N, et al. Development and optimization of a mid-infrared hollow waveguide gas sensor combined with a supported capillary membrane sampler[J]. Appl Spectrosc, 2003, 57(6): 600-606.

[14] Zheng Chuantao, Ye Weilin, Li Guolin, et al. Performance enhancement of a mid-infrared CH4 detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory, design and experiment[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 389-398.

[15] Li Guolin, Sui Yue, Dong Ming, et al. A carbon monoxide detection device based on mid-infrared absorption spectroscopy at 4.6 μm[J]. Applied Physics B, 2015, 119(2): 287-296.

[16] Li Guojin, Yan Zihui, Song Nan, et al. Design and performances of a carbon monoxide sensor using mid infrared absorption spectroscopy technique at 4.6 μm[J]. Spectroscopy Letters, 2015, 48(6): 454-461.

李国林, 季文海, 王一丁. 中红外差分式CO检测仪的设计与实验[J]. 红外与激光工程, 2018, 47(4): 0404005. Li Guolin, Ji Wenhai, Wang Yiding. Design and experiment of mid-infrared differential CO detector[J]. Infrared and Laser Engineering, 2018, 47(4): 0404005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!