Matter and Radiation at Extremes, 2019, 4 (5): 056201, Published Online: Nov. 8, 2019  

Challenges for plasma-facing components in nuclear fusion

Author Affiliations
Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, 52425 Jülich, Germany
Copy Citation Text

Jochen Linke, Juan Du, Thorsten Loewenhoff, Gerald Pintsuk, Benjamin Spilker, Isabel Steudel, Marius Wirtz. Challenges for plasma-facing components in nuclear fusion[J]. Matter and Radiation at Extremes, 2019, 4(5): 056201.

References

[1] Ch. Linsmeier, et al.. Material testing facilities and programs for plasma facing component testing. Nucl. Fusion, 2017, 57: 092012.

[2] J.Linke, J.Compan, T.Hirai, G.Pintsuk, M.Rödig, and K.Wittlich, “Materials for nuclear energy systems,” in Proceedings of Forum 2008 of the World Academy of Ceramics, Chianciano Terme, Italy, July 5–8, 2008, Ceramic Materials in Energy Systems for Sustainable Development, edited by L.Gauckler (Techna Group Srl, 2009), pp. 307334.

[3] Y. Ueda, et al.. Baseline high heat flux and plasma facing materials for fusion. Nucl. Fusion, 2017, 57: 092006.

[4] P. T. Lang, et al.. ELM control strategies and tools: Status and potential for ITER. Nucl. Fusion, 2013, 53: 043004.

[5] A. Loarte, et al.. Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER. Plasma Phys. Controlled Fusion, 2003, 45: 1549.

[6] M. Merola, et al.. Overview and status of ITER internal components. Fusion Eng. Des., 2014, 89: 890.

[7] G. L. Kulcinski. First wall protection schemes for inertial confinement fusion reactors. J. Nucl. Mater., 1979, 85-86(1): 87-97.

[8] V. Barabash, et al.. Armour materials for the ITER plasma facing components. Phys. Scr., 1999, T81: 74.

[9] R. A. Pitts, et al.. A full tungsten divertor for ITER: Physics issues and design status. J. Nucl. Mater., 2013, 438: S48-S56.

[10] T. E. Evans. ELM mitigation techniques. J. Nucl. Mater., 2013, 438: S11-S18.

[11] T. Eich, et al.. Empirical scaling of inter-ELM power widths in ASDEX upgrade and JET. Nucl. Mater., 2013, 438: S72-S77.

[12] K. Wang, et al.. Morphologies of tungsten nanotendrils grown under helium exposure. Sci. Rep., 2017, 7: 42315.

[13] M. R.Gilbert and J.-C.Sublet, “Handbook of activation, transmutation, and radiation damage properties of the elements simulated using FISPACT-II & TENDL-2015; Magnetic fusion plants,” Report No. CCFE-R(16)36, September 2016.

[14] S. L. Dudarev, M. R. Gilbert, J.-Ch. Sublet. Spatial heterogeneity of tungsten transmutation in a fusion device. Nucl. Fusion, 2017, 57(4): 044002.

[15] J.Linke, “Plasma facing materials and components for future fusion reactors,” in Proceeding of the 12th Kudowa Summer School “Towards Fusion, to Energy,”Kudowa Zdroj, June 9–13, 2014.

[16] R. Doerner, A. Hasegawa, M. Rieth, Y. Ueda, M. Wirtz. Behaviour of tungsten under irradiation and plasma interaction. J. Nucl. Mater., 2019, 519: 334-368.

[17] I. Bobin-Vastra, S. Constans, P. Gavila, G. Pintsuk, B. Riccardi, M. Rödig. Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading. Fusion Eng. Des., 2013, 88: 1858-1861.

[18] R. A.Pittset al., J. Nucl. Mater.415(1), S957S964 (2011).

[19] Th. Loewenhoff, et al.. Impact of combined transient plasma/heat loads on tungsten performance below and above recrystallization temperature. Nucl. Fusion, 2015, 55: 123004.

[20] J. P. Gunn, et al.. Surface heat loads on the ITER divertor vertical targets. Nucl. Fusion, 2017, 57: 046025.

[21] J. Schlosser, et al.. Technologies for ITER divertor vertical target plasma facing components. Nucl. Fusion, 2005, 45(6): 512-518.

[22] E. Visca, et al.. Hot radial pressing: An alternative technique for the manufacturing of plasma-facing components. Fusion Eng. Des., 2005, 75: 485-489.

[23] A. Herrmann, et al.. Experiences with a solid tungsten divertor in ASDEX upgrade. Nucl. Mater. Energy, 2017, 12: 205-209.

[24] C. Thomser, et al.. Plasma facing materials for the JET ITER-like wall. Fusion Sci. Technol., 2012, 62(1): 1-8.

[25] T. Hirai, et al.. Use of tungsten material for the ITER divertor. Nucl. Mater. Energy, 2016, 9: 616-622.

[26] A. R.Raffrayet al., Nucl. Fusion54, 033004 (2014).

[27] V. Barabash, F. Escourbiac, T. Hirai, J. Linke, Th. Loewenhoff, S. Panayotis, G. Pintsuk, I. Uytdenhouwen, M. Wirtz. Material properties and their influence on the behaviour of tungsten as plasma facing material. Nucl. Fusion, 2017, 57: 066018.

[28] J. Du, J. Linke, Y. Ma, Z. Zhou. Fabrication and characterization of ultra-fine-grained tungsten by resistance sintering under ultra-high pressure. Mater. Sci. Eng., A, 2009, 505: 131-135.

[29] Ch. Linsmeier, et al.. Development of advanced high heat flux and plasma-facing materials. Nucl. Fusion, 2017, 57: 092007.

[30] J. W. Coenen, et al.. Materials for DEMO and reactor applications—Boundary conditions and new concepts. Phys. Scr., 2016, T167: 014002.

[31] G. De Temmerman, T. Hirai, R. A. Pitts. The influence of plasma-surface interaction on the performance of tungsten at the ITER divertor vertical targets. Plasma Phys. Controlled Fusion, 2018, 60: 044018.

[32] G. De Temmerman. High heat flux capabilities of the magnum-PSI linear plasma device. Fusion Eng. Des., 2013, 88: 483-487.

[33] G. De Temmerman, R. P. Doerner, M. A. van den Berg, J. H. Yu. Study of temporal pulse shape effects on W using simulations and laser heating. Phys. Scr., 2016, T167: 014033.

[34] J. Ahlf, et al.. The HFR Petten as a test bed for fusion materials and components. J. Nucl. Mater., 1994, 212-215(B): 1635-1639.

[35] T. Hirai, et al.. ITER relevant high heat flux testing on plasma facing surfaces. Mater. Trans., 2005, 46(3): 412-424.

[36] R.Duweet al., Fusion Technol. 19941995, 355358 (1995).

[37] A.Schmidtet al., Fusion Eng. Des.83(7-9), 11081113 (2008).

[38] P.Majeruset al., Fusion Eng. Des.75-79, 365369 (2005).

[39] G. Pintsuk. Tungsten as a plasma-facing material. Compr. Nucl. Mater., 2012, 4: 551-581.

[40] A. Zhitlukhin, et al.. Effect of ELMS on ITER armour materials. J. Nucl. Mater., 2007, 363-365: 301-307.

[41] B.Bazylevet al., “Experimental validation of 3D simulations of tungsten melt erosion under ITER-like transient loads,” in 18th International Conference on Plasma Surface Interactions in Controlled Fusion Devices, Toledo, Spain, May 26–30, 2008.

[42] H. Greuner, et al.. Surface morphology changes of tungsten exposed to high heat loading with mixed hydrogen/helium beams. J. Nucl. Mater., 2014, 455: 681.

[43] J. Linke, Th. Loewenhoff, G. Pintsuk, I. Uytdenhouwen, M. Wirtz. Thermal shock tests to qualify different tungsten grades as plasma facing material. Phys. Scr., 2016, T167: 014015.

[44] M. Wirtz, et al.. Transient heat load challenges for plasma-facing materials during long-term operation. Nucl. Mater. Energy, 2017, 12: 148-155.

[45] J. Linke, et al.. Performance of different tungsten grades under transient thermal loads. Nucl. Fusion, 2011, 51: 073017.

[46] Th.Loewenhoffet al., Phys. Scr.T145, 014057 (2011).

[47] Th.Loewenhoffet al., Fusion Eng. Des.87, 12011205 (2012).

[48] K. Wittlich, et al.. Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads. Fusion Eng. Des., 2009, 84: 1982-1986.

[49] J. Compan, T. Hirai, J. Linke, T. Renk. Reduction of preferential erosion of carbon fibre composites under intense transient heat pulses. Phys. Scr., 2007, T128: 246-249.

[50] J. Linke. Plasma facing materials and components for future fusion devices-development, characterization and performance under fusion specific loading conditions. Phys. Scr., 2006, T123: 45-53.

[51] J. Linke. High heat flux performance of plasma facing materials and components under service conditions in future fusion reactors. Trans. Fusion Sci. Technol., 2008, 53: 278-287.

[52] M.Roediget al., J. Nucl. Mater.417, 761764 (2011).

[53] W. Kühnlein, J. Linke, G. Pintsuk, M. Rödig. Investigation of tungsten and beryllium behaviour under short transient events. Fusion Eng. Des., 2007, 82: 1720-1729.

[54] B.Spilkeret al., Nucl. Mater. Energy9, 145152 (2016).

[55] B. Spilker, et al.. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions. Phys. Scr., 2016, T167: 014024.

[56] B. Spilker, et al.. High pulse number transient heat loads on beryllium. Nucl. Mater. Energy, 2017, 12: 1184-1188.

[57] B. Spilker, et al.. Performance estimation of beryllium under ITER relevant transient thermal loads. Nucl. Mater. Energy, 2019, 18: 291-296.

[58] A. Hassanein, I. Konkashbaev. Lifetime evaluation of plasma-facing materials during a tokamak disruption. J. Nucl. Mater., 1996, 233-237: 713-717.

[59] Y. Igitkhanov, I. S. Landman, S. E. Pestchanyi, R. Pitts. Two-dimensional modeling of disruption mitigation by gas injection. Fusion Eng. Des., 2011, 86(9-11): 1616-1619.

[60] G. Camus, G. Chevet, E. Martin, J. Schlosser. Damage modelling in plasma facing components. J. Nucl. Mater., 2009, 386-388: 747-750.

[61] J. T. Busby, S. J. Zinkle. Structural materials for fission & fusion energy. Mater. Today, 2009, 12(11): 12-19.

[62] M. J. Baldwin, R. P. Doerner, T. C. Lynch, J. H. Yu. Retention in tungsten resulting from extremely high fluence plasma exposure. Nucl. Mater. Energy, 2016, 9: 89-92.

[63] A. Kreter, J. Linke, Th. Loewenhoff, G. Pintsuk, G. Sergienko, I. Steudel, B. Unterberg, E. Wessel, M. Wirtz. High pulse number thermal shock tests on tungsten with steady state particle background. Phys. Scr., 2017, T170: 014066.

[64] T. Chraska, T. de Kruif, G. De Temmerman, J. Matejicek, T. W. Morgan, R. A. Pitts, G. G. van Eden, M. Wirtz, G. M. Wright. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads. J. Nucl. Mater., 2015, 463: 198-201.

[65] A. Kreter, et al.. Linear plasma device PSI-2 for plasma-material interaction studies. Fusion Sci. Technol., 2015, 68: 8-14.

[66] M.Wirtzet al., Nucl. Mater. Energy9, 177180 (2016).

[67] A. Huber, et al.. Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten. Phys. Scr., 2014, T159: 014005.

[68] G. Federici, et al.. Overview of the design approach and prioritization of R&D activities towards an EU DEMO. Fusion Eng. Des., 2016, 109-111: 1464-1474.

[69] G. Pintsuk, et al.. High heat flux testing of first wall mock-ups with and without neutron irradiation. Nucl. Mater. Energy, 2016, 9: 41-45.

[70] T. Tanabe. Radiation damage of graphite - degradation of material parameters and defect structures. Phys. Scr., 1996, T64: 7-16.

[71] J. Linke, P. Lorenzetto, P. Majerus, M. Merola, D. Pitzer, M. Rödig. EU development of high heat flux components. Fusion Sci. Technol., 2005, 47(3): 678.

[72] T. Hirai, J. Linke, M. Rödig, L. A. Singheiser. Performance of plasma-facing materials under intense thermal loads in tokamaks and stellarators. Fusion Sci. Technol., 2004, 46(1): 142-151.

Jochen Linke, Juan Du, Thorsten Loewenhoff, Gerald Pintsuk, Benjamin Spilker, Isabel Steudel, Marius Wirtz. Challenges for plasma-facing components in nuclear fusion[J]. Matter and Radiation at Extremes, 2019, 4(5): 056201.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!